
Douwe Osinga

Deep
Learning
 Cookbook
PRACTICAL RECIPES TO GET STARTED QUICKLY

Douwe Osinga

Deep Learning Cookbook
Practical Recipes to Get Started Quickly

978-1-491-99584-6

[LSI]

Deep Learning Cookbook
by Douwe Osinga

Copyright © 2018 Douwe Osinga. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and Jeff Bleiel
Production Editor: Colleen Cole
Copyeditor: Rachel Head
Proofreader: Charles Roumeliotis

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

June 2018: First Edition

Revision History for the First Edition
2018-05-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491995846 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Deep Learning Cookbook, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491995846

Table of Contents

Preface. vii

1. Tools and Techniques. 1
1.1 Types of Neural Networks 1
1.2 Acquiring Data 11
1.3 Preprocessing Data 18

2. Getting Unstuck. 25
2.1 Determining That You Are Stuck 25
2.2 Solving Runtime Errors 26
2.3 Checking Intermediate Results 28
2.4 Picking the Right Activation Function (for Your Final Layer) 29
2.5 Regularization and Dropout 31
2.6 Network Structure, Batch Size, and Learning Rate 32

3. Calculating Text Similarity Using Word Embeddings. 35
3.1 Using Pretrained Word Embeddings to Find Word Similarity 36
3.2 Word2vec Math 38
3.3 Visualizing Word Embeddings 40
3.4 Finding Entity Classes in Embeddings 41
3.5 Calculating Semantic Distances Inside a Class 45
3.6 Visualizing Country Data on a Map 47

4. Building a Recommender System Based on Outgoing Wikipedia Links. 49
4.1 Collecting the Data 49
4.2 Training Movie Embeddings 53
4.3 Building a Movie Recommender 56
4.4 Predicting Simple Movie Properties 57

iii

5. Generating Text in the Style of an Example Text. 61
5.1 Acquiring the Text of Public Domain Books 61
5.2 Generating Shakespeare-Like Texts 62
5.3 Writing Code Using RNNs 65
5.4 Controlling the Temperature of the Output 67
5.5 Visualizing Recurrent Network Activations 69

6. Question Matching. 73
6.1 Acquiring Data from Stack Exchange 73
6.2 Exploring Data Using Pandas 75
6.3 Using Keras to Featurize Text 76
6.4 Building a Question/Answer Model 77
6.5 Training a Model with Pandas 79
6.6 Checking Similarities 80

7. Suggesting Emojis. 83
7.1 Building a Simple Sentiment Classifier 83
7.2 Inspecting a Simple Classifier 86
7.3 Using a Convolutional Network for Sentiment Analysis 87
7.4 Collecting Twitter Data 89
7.5 A Simple Emoji Predictor 91
7.6 Dropout and Multiple Windows 92
7.7 Building a Word-Level Model 94
7.8 Constructing Your Own Embeddings 96
7.9 Using a Recurrent Neural Network for Classification 97
7.10 Visualizing (Dis)Agreement 99
7.11 Combining Models 101

8. Sequence-to-Sequence Mapping. 103
8.1 Training a Simple Sequence-to-Sequence Model 103
8.2 Extracting Dialogue from Texts 105
8.3 Handling an Open Vocabulary 106
8.4 Training a seq2seq Chatbot 108

9. Reusing a Pretrained Image Recognition Network. 113
9.1 Loading a Pretrained Network 114
9.2 Preprocessing Images 114
9.3 Running Inference on Images 116
9.4 Using the Flickr API to Collect a Set of Labeled Images 117
9.5 Building a Classifier That Can Tell Cats from Dogs 118
9.6 Improving Search Results 120
9.7 Retraining Image Recognition Networks 122

iv | Table of Contents

10. Building an Inverse Image Search Service. 125
10.1 Acquiring Images from Wikipedia 125
10.2 Projecting Images into an N-Dimensional Space 128
10.3 Finding Nearest Neighbors in High-Dimensional Spaces 129
10.4 Exploring Local Neighborhoods in Embeddings 130

11. Detecting Multiple Images. 133
11.1 Detecting Multiple Images Using a Pretrained Classifier 133
11.2 Using Faster RCNN for Object Detection 137
11.3 Running Faster RCNN over Our Own Images 139

12. Image Style. 143
12.1 Visualizing CNN Activations 144
12.2 Octaves and Scaling 147
12.3 Visualizing What a Neural Network Almost Sees 149
12.4 Capturing the Style of an Image 152
12.5 Improving the Loss Function to Increase Image Coherence 155
12.6 Transferring the Style to a Different Image 156
12.7 Style Interpolation 158

13. Generating Images with Autoencoders. 161
13.1 Importing Drawings from Google Quick Draw 162
13.2 Creating an Autoencoder for Images 163
13.3 Visualizing Autoencoder Results 166
13.4 Sampling Images from a Correct Distribution 167
13.5 Visualizing a Variational Autoencoder Space 170
13.6 Conditional Variational Autoencoders 172

14. Generating Icons Using Deep Nets. 175
14.1 Acquiring Icons for Training 176
14.2 Converting the Icons to a Tensor Representation 178
14.3 Using a Variational Autoencoder to Generate Icons 179
14.4 Using Data Augmentation to Improve the Autoencoder’s Performance 181
14.5 Building a Generative Adversarial Network 183
14.6 Training Generative Adversarial Networks 185
14.7 Showing the Icons the GAN Produces 186
14.8 Encoding Icons as Drawing Instructions 188
14.9 Training an RNN to Draw Icons 189
14.10 Generating Icons Using an RNN 191

15. Music and Deep Learning. 193
15.1 Creating a Training Set for Music Classification 194

Table of Contents | v

15.2 Training a Music Genre Detector 196
15.3 Visualizing Confusion 198
15.4 Indexing Existing Music 199
15.5 Setting Up Spotify API Access 202
15.6 Collecting Playlists and Songs from Spotify 203
15.7 Training a Music Recommender 206
15.8 Recommending Songs Using a Word2vec Model 206

16. Productionizing Machine Learning Systems. 209
16.1 Using Scikit-Learn’s Nearest Neighbors for Embeddings 210
16.2 Use Postgres to Store Embeddings 211
16.3 Populating and Querying Embeddings Stored in Postgres 212
16.4 Storing High-Dimensional Models in Postgres 213
16.5 Writing Microservices in Python 215
16.6 Deploying a Keras Model Using a Microservice 216
16.7 Calling a Microservice from a Web Framework 217
16.8 TensorFlow seq2seq models 218
16.9 Running Deep Learning Models in the Browser 219
16.10 Running a Keras Model Using TensorFlow Serving 222
16.11 Using a Keras Model from iOS 224

Index. 227

vi | Table of Contents

Preface

A Brief History of Deep Learning
The roots of the current deep learning boom go surprisingly far back, to the 1950s.
While vague ideas of “intelligent machines” can be found further back in fiction and
speculation, the 1950s and ’60s saw the introduction of the first “artificial neural net‐
works,” based on a dramatically simplified model of biological neurons. Amongst
these models, the Perceptron system articulated by Frank Rosenblatt garnered partic‐
ular interest (and hype). Connected to a simple “camera” circuit, it could learn to dis‐
tinguish different types of objects. Although the first version ran as software on an
IBM computer, subsequent versions were done in pure hardware.

Interest in the multilayer perceptron (MLP) model continued through the ’60s. This
changed when, in 1969, Marvin Minksy and Seymour Papert published their book
Perceptrons (MIT Press). The book contained a proof showing that linear perceptrons
could not classify the behavior of a nonlinear function (XOR). Despite the limitations
of the proof (nonlinear perceptron models existed at the time of the book’s publica‐
tion, and are even noted by the authors), its publication heralded the plummeting of
funding for neural network models. Research would not recover until the 1980s, with
the rise of a new generation of researchers.

The increase in computing power together with the development of the back-
propagation technique (known in various forms since the ’60s, but not applied in
general until the ’80s) prompted a resurgence of interest in neural networks. Not only
did computers have the power to train larger networks, but we also had the techni‐
ques to train deeper networks efficiently. The first convolutional neural networks
combined these insights with a model of visual recognition from mammalian brains,
yielding for the first time networks that could efficiently recognize complex images
such as handwritten digits and faces. Convolutional networks do this by applying the
same “subnetwork” to different locations of the image and aggregating the results of
these into higher-level features. In Chapter 12 we look at how this works in more
detail.

vii

In the ’90s and early 2000s interest in neural networks declined again as more
“understandable” models like support vector machines (SVMs) and decision trees
became popular. SVMs proved to be excellent classifiers for many data sources of the
time, especially when coupled with human-engineered features. In computer vision,
“feature engineering” became popular. This involves building feature detectors for
small elements in a picture and combining them by hand into something that recog‐
nizes more complex forms. It later turned out that deep learning nets learn to recog‐
nize very similar features and learn to combine them in a very similar way. In Chap‐
ter 12 we explore some of the inner workings of these networks and visualize what
they learn.

With the advent of general-purpose programming on graphics processing units
(GPUs) in the late 2000s, neural network architectures were able to make great strides
over the competition. GPUs contain thousands of small processors that can do tril‐
lions of operations per second in parallel. Originally developed for computer gaming,
where this is needed to render complex 3D scenes in real time, it turned out that the
same hardware can be used to train neural networks in parallel, achieving speed
improvements of a factor of 10 or higher.

The other thing that happened was that the internet made very large training sets
available. Where researchers had been training classifiers with thousands of images
before, now they had access to tens if not hundreds of millions of images. Combined
with larger networks, neural networks had their chance to shine. This dominance has
only continued in the succeeding years, with improved techniques and applications of
neural networks to areas outside of image recognition, including translation, speech
recognition, and image synthesis.

Why Now?
While the boom in computational power and better techniques led to an increase in
interest in neural networks, we have also seen huge strides in usability. In particular,
deep learning frameworks like TensorFlow, Theano, and Torch allow nonexperts to
construct complex neural networks to solve their own machine learning problems.
This has turned a task that used to require months or years of handcoding and head-
on-table-banging effort (writing efficient GPU kernels is hard!) into something that
anyone can do in an afternoon (or really a few days in practice). Increased usability
has greatly increased the number of researchers who can work on deep learning
problems. Frameworks like Keras with an even higher level of abstraction make it
possible for anyone with a working knowledge of Python and some tools to run some
interesting experiments, as this book will show.

A second important factor for “why now” is that large datasets have become available
for everybody. Yes, Facebook and Google might still have the upper hand with access
to billions of pictures, user comments, and what have you, but datasets with millions

viii | Preface

of items can be had from a variety of sources. In Chapter 1 we’ll look at a variety of
options, and throughout the book the example code for each chapter will usually
show in the first recipe how to get the needed training data.

At the same time, private companies have started to produce and collect orders of
magnitude more data, which has made the whole area of deep learning suddenly
commercially very interesting. A model that can tell the difference between a cat and
a dog is all very well, but a model that increases sales by 15% by taking all historic
sales data into account can be the difference between life and death for a company.

What Do You Need to Know?
These days there is a wide choice of platforms, technologies, and programming lan‐
guages for deep learning. In this book all the examples are in Python and most of the
code relies on the excellent Keras framework. The example code is available on Git‐
Hub as a set of Python notebooks, one per chapter. So, having a working knowledge
of the following will help:

Python
Python 3 is preferred, but Python 2.7 should also work. We use a variety of helper
libraries that all can easily be installed using pip. The code is generally straight‐
forward so even a relative novice should be able to follow the action.

Keras
The heavy lifting for machine learning is done almost completely by Keras. Keras
is an abstraction over either TensorFlow or Theano, both deep learning frame‐
works. Keras makes it easy to define neural networks in a very readable way. All
code is tested against TensorFlow but should also work with Theano.

NumPy, SciPy, scikit-learn
These useful and extensive libraries are casually used in many recipes. Most of
the time it should be clear what is happening from the context, but a quick read-
up on them won’t hurt.

Jupyter Notebook
Notebooks are a very nice way to share code; they allow for a mixture of code,
output of code, and comments, all viewable in the browser.

Each chapter has a corresponding notebook that contains working code. The code in
the book often leaves out details like imports, so it is a good idea to get the code from
Git and launch a local notebook. First check out the code and enter the new direc‐
tory:

git clone https://github.com/DOsinga/deep_learning_cookbook.git
cd deep_learning_cookbook

Preface | ix

Then set up a virtual environment for the project:

python3 -m venv venv3
source venv3/bin/activate

And install the dependencies:

pip install -r requirements.txt

If you have a GPU and want to use that, you’ll need to uninstall tensorflow and
install tensorflow-gpu instead, which you can easily do using pip:

pip uninstall tensorflow
pip install tensorflow-gpu

You’ll also need to have a compatible GPU library setup, which can be a bit of a has‐
sle.

Finally, bring up the IPython notebook server:

jupyter notebook

If everything worked, this should automatically open a web browser with an overview
of the notebooks, one for each chapter. Feel free to play with the code; you can use Git
to easily undo any changes you’ve made if you want to go back to the baseline:

git checkout <notebook_to_reset>.ipynb

The first section of every chapter lists the notebooks relevant for that chapter and the
notebooks are numbered according to the chapters, so it should in general be easy to
find your way around. In the notebook folder, you’ll also find three other directories:

Data
Contains data needed by the various notebooks—mostly samples of open data‐
sets or things that would be too cumbersome to generate yourself.

Generated
Used to store intermediate data.

Zoo
Contains a subdirectory for each chapter that holds saved models for that chap‐
ter. If you don’t have the time to actually train the models, you can still run the
models by loading them from here.

How This Book Is Structured
Chapter 1 provides in-depth information about how neural networks function, where
to get data from, and how to preprocess that data to make it easier to consume. Chap‐
ter 2 is about getting stuck and what to do about it. Neural nets are notoriously hard
to debug and the tips and tricks in this chapter on how to make them behave will
come in handy when going through the more project-oriented recipes in the rest of

x | Preface

the book. If you are impatient, you can skip this chapter and go back to it later when
you do get stuck.

Chapters 3 through 15 are grouped around media, starting with text processing, fol‐
lowed by image processing, and finally music processing in Chapter 15. Each chapter
describes one project split into various recipes. Typically a chapter will start with a
data acquisition recipe, followed by a few recipes that build toward the goal of the
chapter and a recipe on data visualization.

Chapter 16 is about using models in production. Running experiments in notebooks
is great, but ultimately we want to share our results with actual users and get our
models run on real servers or mobile devices. This chapter goes through the options.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xi

Accompanying Code
Each chapter in this book comes with one or more Python notebooks that contain the
example code referred to in the chapters themselves. You can read the chapters
without running the code, but it is more fun to work with the notebooks as you read.
The code can be found at https://github.com/DOsinga/deep_learning_cookbook.

To get the example code for the recipes up and running, execute the following com‐
mands in a shell:

git clone https://github.com/DOsinga/deep_learning_cookbook.git
cd deep_learning_cookbook
python3 -m venv venv3
source venv3/bin/activate
pip install -r requirements.txt
jupyter notebook

This book is here to help you get your job done. All code in the accompanying note‐
books is licensed under the permissive Apache License 2.0.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Deep Learning Cookbook by Douwe
Osinga (O’Reilly). Copyright 2018 Douwe Osinga, 978-1-491-99584-6.”

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

xii | Preface

https://github.com/DOsinga/deep_learning_cookbook
http://oreilly.com/safari
http://oreilly.com/safari

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/deep-learning-cookbook.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
From academics sharing new ideas by (pre)publishing papers on https://arxiv.org, to
hackers coding up those ideas on GitHub to public and private institutions publish‐
ing datasets for anybody to use, the world of machine learning is full of people and
organizations that welcome newcomers and make it as easy to get started as it is.
Open data, open source, and open access publishing—this book wouldn’t be here
without machine learning’s culture of sharing.

What is true for the ideas presented in this book is even more true for the code in this
book. Writing a machine learning model from scratch is hard, so almost all the mod‐
els in the notebooks are based on code from somewhere else. This is the best way to
get things done—find a model that does something similar to what you want and
change it step by step, verifying at each step that things still work.

A special thanks goes out to my friend and coauthor for this book, Russell Power.
Apart from helping to write this Preface, Chapter 6, and Chapter 7, he has been
instrumental in checking the technical soundness of the book and the accompanying

Preface | xiii

http://bit.ly/deep-learning-cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://arxiv.org

code. Moreover, he’s been an invaluable asset as a sounding board for many ideas,
some of which made it into the book.

Then there is my lovely wife, who was the first line of defense when it came to proof‐
reading chapters as they came into being. She has an uncanny ability to spot mistakes
in a text that is neither in her native language nor about a subject she’s previously
been an expert on.

The requirements.in file lists the open source packages that are used in this book. A
heartfelt thank you goes out to all the contributors to all of these projects. This goes
doubly for Keras, since almost all the code is based on that framework and often bor‐
rows from its examples.

Example code and ideas from these packages and many blog posts contributed to this
book. In particular:

Chapter 2, Getting Unstuck
This chapter takes ideas from Slav Ivanov’s blog post “37 Reasons Why Your
Neural Network Is Not Working”.

Chapter 3, Calculating Text Similarity Using Word Embeddings
Thanks to Google for publishing its Word2vec model.

Radim Řehůřek’s Gensim powers this chapter, and some of the code is based on
examples from this great project.

Chapter 5, Generating Text in the Style of an Example Text
This chapter draws heavily on the great blog post “The Unreasonable Effective‐
ness of Recurrent Neural Networks” by Andrej Karpathy. That blog post rekin‐
dled my interest in neural networks.

The visualization was inspired by Motoki Wu’s “Visualizations of Recurrent Neu‐
ral Networks”.

Chapter 6, Question Matching
This chapter was somewhat inspired by the Quora Question Pairs challenge on
Kaggle.

Chapter 8, Sequence-to-Sequence Mapping
The example code is copied from one of the Keras examples, but applied on a
slightly different dataset.

Chapter 11, Detecting Multiple Images
This chapter is based on Yann Henon’s keras_frcnn.

Chapter 12, Image Style
This borrows from “How Convolutional Neural Networks See the World” and of
course Google’s DeepDream.

xiv | Preface

http://bit.ly/2IDxljz
http://bit.ly/2IDxljz
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://bit.ly/2s8uAvg
http://bit.ly/2s8uAvg
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://github.com/yhenon/keras-frcnn
http://bit.ly/2s4ORCf
https://github.com/google/deepdream/blob/master/dream.ipynb

Chapter 13, Generating Images with Autoencoders
Code and ideas are based on Nicholas Normandin’s Conditional Variational
Autoencoder.

Chapter 14, Generating Icons Using Deep Nets
Autoencoder training code for Keras is based on Qin Yongliang’s DCGAN-Keras.

Chapter 15, Music and Deep Learning
This was inspired by Heitor Guimarães’s gtzan.keras.

Preface | xv

http://nnormandin.com/science/2017/07/01/cvae.html
http://nnormandin.com/science/2017/07/01/cvae.html
https://github.com/ctmakro/DCGAN-Keras/blob/master/lets_gan.py
https://github.com/Hguimaraes/gtzan.keras

CHAPTER 1

Tools and Techniques

In this chapter we’ll take a look at common tools and techniques for deep learning.
It’s a good chapter to read through once to get an idea of what’s what and to come
back to when you need it.

We’ll start out with an overview of the different types of neural networks that are cov‐
ered in this book. Most of the recipes later in the book focus on getting things done
and only briefly discuss how deep neural networks are architected.

We’ll then discuss where to get data from. Tech giants like Facebook and Google have
access to tremendous amounts of data to do their deep learning research, but there’s
enough data out there for us to do interesting stuff too. The recipes in this book take
their data from a wide range of sources.

The next part is about preprocessing of data. This is a very important area that is
often overlooked. Even if you have the right network setup and you have great data,
you still need to make sure that the data you have is presented in the best way to the
network. You want to make it as easy as possible for the network to learn the things it
needs to learn and not get distracted by other irrelevant bits in the data.

1.1 Types of Neural Networks
Throughout this chapter and indeed the book we will talk about networks and models.
Network is short for neural network and refers to a stack of connected layers. You
feed data in on one side and transformed data comes out on the other side. Each layer
implements a mathematical operation on the data flowing through it and has a set of
variables that can be modified that determine the exact behavior of the layer. Data
here refers to a tensor, a vector with multiple dimensions (typically two or three).

1

A full discussion of the different types of layers and the math behind their operations
is beyond the scope of this book. The simplest type of layer, the fully connected layer,
takes its input as a matrix, multiplies that matrix with another matrix called the
weights, and adds a third matrix called the bias. Each layer is followed by an activation
function, a mathematical function that maps the output of one layer to the input of
the next layer. For example, a simple activation function called ReLU passes on all
positive values, but sets negative values to zero.

Technically the term network refers to the architecture, the way in which the various
layers are connected to each other, while a model is a network plus all the variables
that determine the runtime behavior. Training a model modifies those variables to
make the predictions fit the expected output better. In practice, though, the two terms
are often used interchangeably.

The terms “deep learning” and “neural networks” in reality encompass a wide variety
of models. Most of these networks will share some elements (for example, almost all
classification networks will use a particular form of loss function). While the space of
models is diverse, we can group most of them into some broad categories. Some
models will use pieces from multiple categories: for example, many image classifica‐
tion networks have a fully connected section “head” to perform the final classifica‐
tion.

Fully Connected Networks
Fully connected networks were the first type of network to be researched, and domi‐
nated interest until the late 1980s. In a fully connected network, each output unit is
calculated as a weighted sum of all of the inputs. The term “fully connected” arises
from this behavior: every output is connected to every input. We can write this as a
formula:

yi = ∑ j Wi jx j

For brevity, most papers represent a fully connected network using matrix notation.
In this case we are multiplying a vector of inputs with a weight matrix W to get a vec‐
tor of outputs:

y = Wx

As matrix multiplication is a linear operation, a network that only contained matrix
multiplies would be limited to learning linear mappings. In order to make our net‐
works more expressive, we follow the matrix multiply with a nonlinear activation
function. This can be any differentiable function, but a few are very common. The

2 | Chapter 1: Tools and Techniques

hyperbolic tangent, or tanh, function was until recently the dominant type of activa‐
tion function, and can still be found in some models:

The difficulty with the tanh function is that it is very “flat” when an input is far from
zero. This results in a small gradient, which means that a network can take a very
long time to change behavior. Recently, other activation functions have become pop‐
ular. One of the most common is the rectified linear unit, or ReLU, activation func‐
tion:

Finally, many networks use a sigmoid activation function in the last layer of the net‐
work. This function always outputs a value between 0 and 1. This allows the outputs
to be treated as probabilities:

1.1 Types of Neural Networks | 3

A matrix multiplication followed by the activation function is referred to as a layer of
the network. In some networks the complete network can have over 100 layers,
though fully connected networks tend to be limited to a handful. If we are solving a
classification problem (“What type of cat is in this picture?”), the last layer of the net‐
work is called a classification layer. It will always have the same number of outputs as
we have classes to choose from.

Layers in the middle of the network are called hidden layers, and the individual out‐
puts from a hidden layer are sometimes referred to as hidden units. The term “hid‐
den” comes from the fact that these units are not directly visible from the outside as
inputs or outputs for our model. The number of outputs in these layers depends on
the model:

4 | Chapter 1: Tools and Techniques

While there are some rules of thumb about how to choose the number and size of
hidden layers, there is no general policy for choosing the best setup other than trial
and error.

Convolutional Networks
Early research used fully connected networks to try to solve a wide variety of prob‐
lems. But when our input is images, fully connected networks can be a poor choice.
Images are very large: a single 256×256-pixel image (a common resolution for classi‐
fication) has 256×256×3 inputs (3 colors for each pixel). If this model has a single
hidden layer with 1,000 hidden units, then this layer will have almost 200 million
parameters (learnable values)! Since image models require quite a few layers to per‐
form well at classification, if we implemented them just using fully connected layers
we would end up with billions of parameters.

With so many parameters, it would be almost impossible for us to avoid overfitting
our model (overfitting is described in detail in the next chapter; it refers to when a
network fails to generalize, but just memorizes outcomes). Convolutional neural net‐
works (CNNs) provide a way for us to train superhuman image classifiers using far
fewer parameters. They do this by mimicking how animals and humans see:

The fundamental operation in a CNN is a convolution. Instead of applying a function
to an entire input image, a convolution scans across a small window of the image at a
time. At each location it applies a kernel (typically a matrix multiplication followed by
an activation function, just like in a fully connected network). Individual kernels are
often referred to as filters. The result of applying the kernel to the entire image is a
new, possibly smaller image. For example, a common filter shape is (3, 3). If we were
to apply 32 of these filters to our input image, we would need 3 * 3 * 3 (input colors) *
32 = 864 parameters—that’s a big savings over a fully connected network!

Subsampling
This operation saves on the number of parameters, but now we have a different prob‐
lem. Each layer in the network can only “look” at a 3×3 layer of the image at a time: if
this is the case, how can we possibly recognize objects that take up the entire image?

1.1 Types of Neural Networks | 5

To handle this, a typical convolution network uses subsampling to reduce the size of
the image as it passes through the network. Two common mechanisms are used for
subsampling:

Strided convolutions
In a strided convolution, we simply skip one or more pixels while sliding our
convolution filter across the image. This results in a smaller size image. For
example, if our input image was 256×256, and we skip every other pixel, then our
output image will be 128×128 (we are ignoring the issue of padding at the edges
of the image for simplicity). This type of strided downsampling is commonly
found in generator networks (see “Adversarial Networks and Autoencoders” on
page 9).

Pooling
Instead of skipping over pixels during convolution, many networks use pooling
layers to shrink their inputs. A pooling layer is actually another form of convolu‐
tion, but instead of multiplying our input by a matrix, we apply a pooling opera‐
tor. Typically pooling uses the max or average operator. Max pooling takes the
largest value from each channel (color) over the region it is scanning. Average
pooling instead averages all of the values over the region. (It can be thought of as
a simple type of blurring of the input.)

One way to think about subsampling is as a way to increase the abstraction level of
what the network is doing. On the lowest level, our convolutions detect small, local
features. There are many features that are not very deep. With each pooling step, we
increase the abstraction level; the number of features is reduced, but the depth of each
feature increases. This process is continued until we end up with very few features
with a high level of abstraction that can be used for prediction.

Prediction
After stacking a number of convolutional and pooling layers together, CNNs use one
or two fully connected layers at the head of the network to output a prediction.

Recurrent Networks
Recurrent neural networks (RNNs) are similar in concept to CNNs but are structurally
very different. Recurrent networks are frequently applied when we have a sequential
input. These inputs are commonly found when working with text or voice process‐
ing. Instead of processing a single example completely (as we might use a CNN for an
image), with sequential problems we can process only a portion of the problem at a
time. For example, let’s consider building a network that writes Shakespearean plays
for us. Our input would naturally be the existing plays by Shakespeare:

Lear. Attend the lords of France and Burgundy, Gloucester.
Glou. I shall, my liege.

6 | Chapter 1: Tools and Techniques

What we want the network to learn to do is to predict the next word of the play for
us. To do so, it needs to “remember” the text that it has seen so far. Recurrent net‐
works give us a mechanism to do this. They also allow us to build models that natu‐
rally work across inputs of varying lengths (sentences or chunks of speech, for exam‐
ple). The most basic form of an RNN looks like this:

Conceptually, you can think of this RNN as a very deep fully connected network that
we have “unrolled.” In this conceptual model, each layer of the network takes two
inputs instead of the one we are used to:

Recall that in our original fully connected network, we had a matrix multiplication
operation like:

y = Wx

The simplest way to add our second input to this operation is to just concatenate it to
our hidden state:

hiddeni = W hiddeni − 1 x

where in this case the “|” stands for concatenate. As with our fully connected net‐
work, we can apply an activation function to the output of our matrix multiplication
to obtain our new state:

1.1 Types of Neural Networks | 7

hiddeni = f W hiddeni − 1 x

With this interpretation of our RNN, we also can easily understand how it can be
trained: we simply treat the RNN as we would an unrolled fully connected network
and train it normally. This is referred to in literature as backpropagation through time
(BPTT). If we have very long inputs, it is common to split them into smaller-sized
pieces and train each piece independently. While this does not work for every prob‐
lem, it is generally safe and is a widely used technique.

Vanishing gradients and LSTMs
Our naive RNN unfortunately tends to perform more poorly than we would like for
long input sequences. This is because its structure makes it likely to encounter the
“vanishing gradients” problem. Vanishing gradients result from the fact that our
unrolled network is very deep. Each time we go through an activation function,
there’s a chance it will result in a small gradient getting passed through (for instance,
ReLU activation functions have a zero gradient for any input < 0). Once this happens
for a single unit, no more training can be passed down further through the network
via that unit. This results in an ever-sparser training signal as we go down. The
observed result is extremely slow or nonexistent learning of the network.

To combat this, researchers developed an alternative mechanism for building RNNs.
The basic model of unrolling our state over time is kept, but instead of doing a simple
matrix multiply followed by the activation function, we have a more complex way of
passing our state forward (source: Wikipedia):

A long short-term memory network (LSTM) replaces our single matrix multiplication
with four, and introduces the idea of gates that are multiplied with a vector. The key
behavior that enables an LSTM to learn more effectively than vanilla RNNs is that

8 | Chapter 1: Tools and Techniques

https://bit.ly/2HJL86P

there is always a path from the final prediction to any layer that preserves gradients.
The details of how it accomplishes this are beyond the scope of this chapter, but sev‐
eral excellent tutorials exist on the web.

Adversarial Networks and Autoencoders
Adversarial networks and autoencoders do not introduce new structural components,
like the networks we’ve talked about so far. Instead, they use the structure most
appropriate to the problem: an adversarial network or autoencoder for images will
use convolutions, for example. Where they differ is in how they are trained. Most
normal networks are trained to predict an output (is this a cat?) from an input (a pic‐
ture):

Autoencoders are instead trained to output back the image they are presented:

Why would we want to do this? If the hidden layers in the middle of our network
contain a representation of the input image that has (significantly) less information
than the original image yet from which the original image can be reconstructed, then
this results in a form of compression: we can take any image and represent it just by

1.1 Types of Neural Networks | 9

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

the values from the hidden layer. One way to think about this is that we take the origi‐
nal image and use the network to project it into an abstract space. Each point in that
space can then be converted back into an image.

Autoencoders have been successfully applied to small images, but the mechanism for
training them does not scale up to larger problems. The space in the middle from
which the images are drawn is in practice not “dense” enough, and many of the points
don’t actually represent coherent images.

We’ll seen an example of an autoencoder network in Chapter 13.

Adversarial networks are a more recent model that can actually generate realistic
images. They work by splitting the problem into two parts: a generator network and a
discriminator network. The generator network takes a small random seed and pro‐
duces a picture (or text). The discriminator network tries to determine if an input
image is “real” or if it came from the generator network.

When we train our adversarial model, we train both of these networks at the same
time:

We sample some images from our generator network and feed them through our dis‐
criminator network. The generator network is rewarded for producing images that
can fool the discriminator. The discriminator network also has to correctly recognize
real images (it can’t just always say an image is a fake). By making the networks com‐
pete against each other, this procedure can result in a generator network that pro‐

10 | Chapter 1: Tools and Techniques

duces high-quality natural images. Chapter 14 shows how we can use generative
adversarial networks to generate icons.

Conclusion
There are a great many ways to architect a network, and the choice obviously is
mostly driven by the purpose of the network. Designing a new type of network is
firmly in the research realm, and even reimplementing a type of network described in
a paper is hard. In practice the easiest thing to do is to find an example that does
something in the direction of what you want and change it step by step until it really
does what you want.

1.2 Acquiring Data
One of the key reasons why deep learning has taken off in recent years is the dramatic
increase in the availability of data. Twenty years ago networks were trained with
thousands of images; these days companies like Facebook and Google work with bil‐
lions of images.

Having access to all the information from their users no doubt gives these and other
internet giants a natural advantage in the deep learning field. However, there are
many data sources easily accessible on the internet that, with a little massaging, can fit
many training purposes. In this section, we’ll discuss the most important ones. For
each, we’ll look into how to acquire the data, what popular libraries are available to
help with parsing, and what typical use cases are. I’ll also refer you to any recipes that
use this data source.

Wikipedia
Not only does the English Wikipedia comprise more than 5 million articles, but Wiki‐
pedia is also available in hundreds of languages, albeit with widely different levels of
depth and quality. The basic wiki idea only supports links as a way to encode struc‐
ture, but over time Wikipedia has gone beyond this.

Category pages link to pages that share a property or a subject, and since Wikipedia
pages link back to their categories, we can effectively use them as tags. Categories can
be very simple, like “Cats,” but sometimes encode information in their names that
effectively assigns (key, value) pairs to a page, like “Mammals described in 1758.” The
category hierarchy, like much on Wikipedia, is fairly ad hoc, though. Moreover,
recursive categories can only be traced by walking up the tree.

Templates were originally designed as segments of wiki markup that are meant to be
copied automatically (“transcluded”) into a page. You add them by putting the tem‐
plate’s name in {{double braces}}. This made it possible to keep the layout of differ‐

1.2 Acquiring Data | 11

https://en.wikipedia.org/wiki/List_of_Wikipedias

ent pages in sync—for example, all city pages have an info box with properties like
population, location, and flag that are rendered consistently across pages.

These templates have parameters (like the population) and can be seen as a way to
embed structured data into a Wikipedia page. In Chapter 4 we use this to extract a set
of movies that we then use to train a movie recommender system.

Wikidata
Wikidata is Wikipedia’s structured data cousin. It is lesser known and also less com‐
plete, but even more ambitious. It is intended to provide a common source of data
that can be used by anyone under a public domain license. As such, it makes for an
excellent source of freely available data.

All Wikidata is stored as triplets of the form (subject, predicate, object). All subjects
and predicates have their own entries in Wikidata that list all predicates that exist for
them. Objects can be Wikidata entries or literals such as strings, numbers, or dates.
This structure takes inspiration from early ideas around the semantic web.

Wikidata has its own query language that looks like SQL with some interesting exten‐
sions. For example:

SELECT ?item ?itemLabel ?pic
WHERE
{
 ?item wdt:P31 wd:Q146 .
 OPTIONAL {
 ?item wdt:P18 ?pic
 }
 SERVICE wikibase:label {
 bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en"
 }
}

will select a series of cats and their pictures. Anything that starts with a question mark
is a variable. wdt:P31, or property 31, means “is an instance of,” and wd:Q146 is the
class of house cats. So the fourth line stores in item anything that is an instance of
cats. The OPTIONAL { .. } clause then tries to look up pictures for the item and the
last magic line tries to find a label for the item using the auto-language feature or, fail‐
ing that, English.

In Chapter 10 we use a combination of Wikidata and Wikipedia to acquire canonical
images for categories to use as a basis for a reverse image search engine.

OpenStreetMap
OpenStreetMap is like Wikipedia, but for maps. Whereas with Wikipedia the idea is
that if everybody in the world put down everything they knew in a wiki, we’d have the

12 | Chapter 1: Tools and Techniques

https://www.wikidata.org/
https://www.openstreetmap.org/

best encyclopedia possible, OpenStreetMap (OSM) is based on the idea that if every‐
body put the roads they knew in a wiki, we’d have the best mapping system possible.
Remarkably, both of these ideas have worked out quite well.

While the coverage of OSM is rather uneven, ranging from areas that are barely cov‐
ered to places where it rivals or exceeds what can be found on Google Maps, the sheer
amount of data and the fact that it is all freely available makes it a great resource for
all types of projects that are of a geographical nature.

OSM is downloadable for free in a binary format or a huge XML file. The whole
world is tens of gigabytes, but there are a number of locations on the internet where
we can find OSM dumps per country or region if we want to start smaller.

The binary and XML formats both have the same structure: a map is made out of a
series of nodes that each have a latitude and a longitude, followed by a series of ways
that combine previously defined nodes into larger structures. Finally, there are rela‐
tions that combine anything that was seen before (nodes, ways, or relations) into
superstructures.

Nodes are used to represents points on the maps, including individual features, as
well as to define the shapes of ways. Ways are used for simple shapes, like buildings
and road segments. Finally, relations are used for anything that contains more than
one shape or very big things like coastlines or borders.

Later in the book, we’ll look at a model that takes in satellite images and rendered
maps and tries to learn to recognize roads automatically. The actual data used for
those recipes is not specifically from OSM, but it is the sort of thing that OSM is used
for in deep learning. The “Images to OSM” project, for example, shows how to train a
network to learn to extract shapes of sports fields from satellite images to improve
OSM itself.

Twitter
As a social network Twitter might have trouble competing with the much bigger
Facebook, but as a source for text to train deep learning models, it is much better.
Twitter’s API is nicely rounded and allows for all kinds of apps. To the budding
machine learning hacker though, the streaming API is possibly the most interesting.

The so-called Firehose API offered by Twitter streams all tweets directly to a client.
As one can imagine, this is a rather large amount of data. On top of that, Twitter
charges serious money for this. It is less known that the free Twitter API offers a sam‐
pled version of the Firehose API. This API returns only 1% of all tweets, but that is
plenty for many text processing applications.

Tweets are limited in size and come with a set of interesting metainformation like the
author, a timestamp, sometimes a location, and of course tags, images, and URLs. In

1.2 Acquiring Data | 13

https://github.com/jremillard/images-to-osm

Chapter 7 we look at using this API to build a classifier to predict emojis based on a
bit of text. We tap into the streaming API and keep only the tweets that contain
exactly one emoji. It takes a few hours to get a decent training set, but if you have
access to a computer with a stable internet connection, letting it run for a few days
shouldn’t be an issue.

Twitter is a popular source of data for experiments in sentiment analysis, which argu‐
ably predicting emojis is a variation of, but models aimed at language detection, loca‐
tion disambiguation, and named entity recognition have all been trained successfully
on Twitter data too.

Project Gutenberg
Long before Google Books—in fact, long before Google and even the World Wide
Web, back in 1971, Project Gutenberg launched with the aim to digitize all books. It
contains the full text of over 50,000 works, not just novels, poetry, short stories, and
drama, but also cookbooks, reference works, and issues of periodicals. Most of the
works are in the public domain and they can all be freely downloaded from the web‐
site.

This is a massive amount of text in a convenient format, and if you don’t mind that
most of the texts are a little older (since they are no longer in copyright) it’s a very
good source of data for experiments in text processing. In Chapter 5 we use Project
Gutenberg to get a copy of Shakespeare’s collected works as a basis to generate more
Shakespeare-like texts. All it takes is this one-liner if you have the Python library
available:

shakespeare = strip_headers(load_etext(100))

The material available via Project Gutenberg is mostly in English, although a small
amount of works are available in other languages. The project started out as pure
ASCII but has since evolved to support a number of character encodings, so if you
download a non-English text, you need to make sure that you have the right encoding
—not everything in the world is UTF-8 yet. In Chapter 8 we extract all dialogue from
a set of books retrieved from Project Gutenberg and then train a chatbot to mimic
those conversations.

Flickr
Flickr is a photo sharing site that has been in operation since 2004. It originally
started as a side project for a massively multiplayer online game called Game Never‐
ending. When the game failed to become a business on its own, the company’s found‐
ers realized that the photo sharing part of the company was taking off and so they
executed what is called a pivot, completely changing the main focus of the company.
Flickr was sold to Yahoo a year later.

14 | Chapter 1: Tools and Techniques

http://www.gutenberg.org/
https://www.flickr.com/

Among the many, many photo sharing sites out there, Flickr stands out as a useful
source of images for deep learning experiments for a few reasons.

One is that Flickr has been at this for a long time and has collected a set of billions of
images. This might pale in comparison to the number of images that people upload to
Facebook in a single month, but since users upload photos to Flickr that they are
proud of for public consumption, Flickr images are on average of higher quality and
of more general interest.

A second reason is licensing. Users on Flickr pick a license for their photos, and many
pick some form of Creative Commons licensing that allows for reuse of some kind
without asking permission. While you typically don’t need this if you run a bunch of
photos through your latest nifty algorithm and are only interested in the end results,
it is quite essential if your project ultimately needs to republish the original or modi‐
fied images. Flickr makes this possible.

The last and possibly most important advantage that Flickr has over most of its com‐
petitors is the API. Just like Twitter’s, it is a well-thought-out, REST-style API that
makes it easy to do anything you can do with the site in an automatic fashion. And
just like with Twitter there are good Python bindings for the API, which makes it
even easier to start experimenting. All you need is the right library and a Flickr API
key.

The main features of the API relevant for this book are searching for images and
fetching of images. The search is quite versatile and mimics most of the search
options of the main website, although some advanced filters are unfortunately miss‐
ing. Fetching images can be done for a large variety of sizes. It is often useful to get
started more quickly with smaller versions of the images first and scale up later.

In Chapter 9 we use the Flickr API to fetch two sets of images, one with dogs and one
with cats, and train a classifier to learn the difference between the two.

The Internet Archive
The Internet Archive has a stated mission of providing “universal access to all knowl‐
edge.” The project is probably most famous for its Wayback Machine, a web interface
that lets users look at web pages over time. It contains over 300 billion captures dating
all the way back to 2001 in what the project calls a three-dimensional web index.

But the Internet Archive is far bigger than the Wayback Machine and comprises a
ragtag assortment of documents, media, and datasets covering everything from books
out of copyright to NASA images to cover art for CDs to audio and video material.
These are all really worth browsing through and often inspire new projects on the
spot.

1.2 Acquiring Data | 15

https://creativecommons.org/
https://archive.org/

One interesting example is a set of all Reddit comments up to 2015 with over 50 mil‐
lion entries. This started out as a project of a Reddit user who just patiently used the
Reddit API to download all of them and then announced that on Reddit. When the
question came up of where to host it, the Internet Archive turned out to be a good
option (though the same data can be found on Google’s BigQuery for even more
immediate analysis).

An example we use in this book is the set of Stack Exchange questions. Stack
Exchange has always been licensed under a Creative Commons license, so nothing
would stop us from downloading these sets ourselves, but getting them from the
Internet Archive is so much easier. In this book we use this dataset to train a model to
match questions with answers (see Chapter 6).

Crawling
If you need anything specific for your project, chances are that the data you are after
is not accessible through a public API. And even if there is a public API, it might be
rate limited to the point of being useless. Historic results for your favorite sports are
hard to come by. Your local newspaper might have an online archive, but probably no
API or data dump. Instagram has a nice API, but the recent changes to the terms of
service make it hard to use it to acquire a large set of training data.

In these cases, you can always resort to scraping, or, if you want to sound more
respectable, crawling. In the simplest scenario you just want to get a copy of a website
on your local system and you have no prior knowledge about the structure of that
website or the format of the URLs. In that case you just start with the root of the web‐
site, fetch the web content of it, extract all links from that web content, and do the
same for each of those links until you find no more new links. This is how Google
does it too, be it at a larger scale. Scrapy is a useful framework for this sort of thing.

Sometimes there is an obvious hierarchy, like a travel website with pages for coun‐
tries, regions in those countries, cities in those regions, and finally attractions in those
cities. In that case it might be more useful to write a more targeted scraper that suc‐
cessively works its way through the various layers of hierarchy until it has all the
attractions.

Other times there is an internal API to take advantage of. Many content-oriented
websites will load the overall layout and then use a JSON call back to the web server
to get the actual data and insert this on the fly into the template. This makes it easy to
support infinite scrolling and search. The JSON returned from the server is often easy
to make sense of, as are the parameters passed to the server. The Chrome extension
Request Maker shows all requests that a page makes and is a good way to see if any‐
thing useful goes over the line.

16 | Chapter 1: Tools and Techniques

https://archive.org/details/stackexchange
https://scrapy.org
http://bit.ly/request-maker

Then there are the websites that don’t want to be crawled. Google might have built an
empire on scraping the world, but many of its services very cleverly detect signs of
scraping and will block you and possibly anybody making requests from your IP
address until you do a captcha. You can play with rate limiting and user agents, but at
some point you might have to resort to scraping using a browser.

WebDriver, a framework developed for testing websites by instrumenting a browser,
can be very helpful in these situations. The fetching of the pages is done with your
choice of browser, so to the web server everything seems as real as it can get. You can
then “click” on links using your control script to go to the next page and inspect the
results. Consider sprinkling the code with delays to make it seem like a human is
exploring the site and you should be good to go.

The code in Chapter 10 uses crawling techniques to fetch images from Wikipedia.
There is a URL scheme to go from a Wikipedia ID to the corresponding image, but it
doesn’t always pan out. In that case we fetch the page that contains the image and fol‐
low the link graph until we get to the actual image.

Other Options
There are many ways to get data. The ProgrammableWeb lists more than 18,000 pub‐
lic APIs (though some of those are in a state of disrepair). Here are three that are
worth highlighting:

Common Crawl
Crawling one site is doable if the site is not very big. But what if you want to
crawl all of the major pages of the internet? The Common Crawl runs a monthly
crawl fetching around 2 billion web pages each time in an easy-to-process for‐
mat. AWS has this as a public dataset, so if you happen to run on that platform
that’s an easy way to run jobs on the web at large.

Facebook
Over the years the Facebook API has shifted subtly from being a really useful
resource to build applications on top of Facebook’s data to a resource to build
applications that make Facebook’s data better. While this is understandable from
Facebook’s perspective, as a data prospector one often wonders about the data it
could make public. Still, the Facebook API is a useful resource—especially the
Places API in situations where OSM is just too unevenly edited.

US government
The US government on all levels publishes a huge amount of data, and all of it is
freely accessible. For example, the census data has detailed information about the
US population, while Data.gov has a portal with many different datasets all over
the spectrum. On top of that, individual states and cities have their own resources
worth looking at.

1.2 Acquiring Data | 17

https://www.programmableweb.com/
http://commoncrawl.org/
https://www.census.gov
https://www.data.gov/

1.3 Preprocessing Data
Deep neural networks are remarkably good at finding patterns in data that can help
in learning to predict the labels for the data. This also means that we have to be care‐
ful with the data we give them; any pattern in the data that is not relevant for our
problem can make the network learn the wrong thing. By preprocessing data the
right way we can make sure that we make things as easy as possible for our networks.

Getting a Balanced Training Set
An apocryphal story relates how the US Army once trained a neural network to dis‐
criminate between camouflaged tanks and plain forest—a useful skill when automati‐
cally analyzing satellite data. At first sight they did everything right. On one day they
flew a plane over a forest with camouflaged tanks in it and took pictures, and on
another day they did the same when there were no tanks, making sure to photograph
scenes that were similar but not quite the same. They split the data up into training
and test sets and let the network train.

The network trained well and started to get good results. However, when the
researchers sent it out to be tested in the wild, people thought it was a joke. The pre‐
dictions seemed utterly random. After some digging, it turned out that the input data
had a problem. All the pictures containing tanks had been taken on a sunny day,
while the pictures with just forest happened to have been taken on a cloudy day. So
while the researchers thought their network had learned to discriminate between
tanks and nontanks, they really had trained a network to observe the weather.

Preprocessing data is all about making sure the network picks up on the signals we
want it to pick up on and is not distracted by things that don’t matter. The first step
here is to make sure that we actually have the right input data. Ideally the data should
resemble as closely as possible the real-world situation.

Making sure that the signal in the data is the signal we are trying to learn seems obvi‐
ous, but it is easy to get this wrong. Getting data is hard, and every source has its own
peculiarities.

There are a few things we can do when we find our input data is tainted. The best
thing is, of course, to rebalance the data. So in the tanks versus forest example, we
would try to get pictures for both scenarios in all types of weather. (When you think
about it, even if all the original pictures had been taken in sunny weather, the training
set would still have been suboptimal—a balanced set would contain weather condi‐
tions of all types.)

A second option is to just throw out some data to make the set more balanced. Maybe
there were some pictures of tanks taken on cloudy days after all, but not enough—so
we could throw out some of the sunny pictures. This obviously cuts down the size of

18 | Chapter 1: Tools and Techniques

the training set, however, and might not be an option. (Data augmentation, discussed
in “Preprocessing of Images” on page 22, could help.)

A third option is to try to fix the input data, say by using a photo filter that makes the
weather conditions appear more similar. This is tricky though, and can easily lead to
other or even more artifacts that the network might detect.

Creating Data Batches
Neural networks consume data in batches (sets of input/output pairs). It is important
to make sure that these batches are properly randomized. Imagine we have a set of
pictures, the first half all depicting cats and the second half dogs. Without shuffling, it
would be impossible for the network to learn anything from this dataset: almost all
batches would either contain only cats or only dogs. If we use Keras and if we have
our data entirely in memory, this is easily accomplished using the fit method since it
will do the shuffling for us:

char_cnn_model.fit(training_data, training_labels, epochs=20, batch_size=128)

This will randomly create batches with a size of 128 from the training_data and
training_labels sets. Keras takes care of the proper randomizing. As long as we
have our data in memory, this is usually the way to go.

In some circumstances we might want to call fit with one batch at
a time, in which case we do need to make sure things are properly
shuffled. numpy.random.shuffle will do just fine, though we have
to take care to shuffle the data and the labels in unison.

We don’t always have all the data in memory, though. Sometimes the data would be
too big or needs to be processed on the fly and isn’t available in the ideal format. In
those situations we use fit_generator:

char_cnn_model.fit_generator(
 data_generator(train_tweets, batch_size=BATCH_SIZE),
 epochs=20
)

Here, data_generator is a generator that yields batches of data. The generator has to
make sure that the data is properly randomized. If the data is read from a file, shuf‐
fling is not really an option. If the file comes from an SSD and the records are all the
same size, we can shuffle by seeking randomly inside of the file. If this is not the case
and the file has some sort of sorting, we can increase randomness by having multiple
file handles in the same file, all at different locations.

When setting up a generator that produces batches on the fly, we also need to pay
attention to keep things properly randomized. For example, in Chapter 4 we build a

1.3 Preprocessing Data | 19

movie recommender system by training on Wikipedia articles, using as the unit of
training links from the movie page to some other page. The easiest way to generate
these (FromPage, ToPage) pairs would be to randomly pick a FromPage and then
randomly pick a ToPage from all the links found on FromPage.

This works, of course, but it will select links from pages with fewer links on them
more often than it should. A FromPage with one link on it has the same chance of
being picked in the first step as a page with a hundred links. In the second step,
though, that one link is certain to be picked, while any of the links from the page with
a hundred links has only a small chance of selection.

Training, Testing, and Validation Data
After we’ve set up our clean, normalized data and before the actual training phase, we
need to split the data up in a training set, a test set, and possibly a validation set. As
with many things, the reason we do this has to do with overfitting. Networks will
almost always memorize a little bit of the training data rather than learn generaliza‐
tions. By separating a small amount of the data into a test set that we don’t use for
training, we can measure to what extent this is happening; after each epoch we meas‐
ure accuracy over both the training and the test set, and as long as the two numbers
don’t diverge too much, we’re fine.

If we have our data in memory we can use train_test_split from sklearn to neatly
split our data into training and test sets:

data_train, data_test, label_train, label_test = train_test_split(
 data, labels, test_size=0.33, random_state=42)

This will create a test set containing 33% of the data. The random_state variable is
used for the random seed, which guarantees that if we run the same program twice,
we get the same results.

When feeding our network using a generator, we need to do the splitting ourselves.
One general though not very efficient approach would be to use something like:

def train_or_test(gen, train=True):
 for i, x in enumerate(gen):
 if (i % 4 == 0) != train:
 yield x

When train is False this yields every fourth element coming from the generator gen.
When it is True it yields the rest.

Sometimes a third set is split off from the training data, called the validation set.
There is some confusion in the naming here; when there are only two sets the test set
is sometimes also called the validation set (or holdout set). In a scenario where we
have training, validation, and test sets, the validation set is used to measure perfor‐

20 | Chapter 1: Tools and Techniques

mance while tuning the model. The test set is meant to be used only when all tuning
is done and no more changes are going to be made to the code.

The reason to keep this third set is to stop us from manually overfitting. A complex
neural network can have a very large number of tuning options or hyperparameters.
Finding the right values for these hyperparameters is an optimization problem that
can also suffer from overfitting. We keep adjusting those parameters until the perfor‐
mance on the validation set no longer increases. By having a test set that was not used
during tuning, we can make sure that we didn’t inadvertently optimize our hyper
parameters for the validation set.

Preprocessing of Text
A lot of neural networking problems involve text processing. Preprocessing the input
texts in these situations involves mapping the input text to a vector or matrix that we
can feed into a network.

Typically, the first step is to break up the text into units. There are two common ways
to do this: on a character or a word basis.

Breaking up a text into a stream of single characters is straightforward and gives us a
predictable number of different tokens. If all our text is in one phoneme-based script,
the number of different tokens is quite restricted.

Breaking up a text into words is a more complicated tokenizing strategy, especially in
scripts that don’t indicate the beginning and ending of words. Moreover, there is no
obvious upper limit to the number of different tokens that we’ll end up with. A num‐
ber of text processing toolkits have a “tokenize” function that usually also allows for
the removal of accents and optionally converts all tokens to lowercase.

A process called stemming, where we convert each word to its root form (by dropping
any grammar-related modifications), can help, especially for languages that are more
grammar-heavy than English. In Chapter 8 we’ll encounter a subword tokenizing
strategy that breaks up complicated words into subtokens thereby guaranteeing a spe‐
cific upper limit on the number of different tokens.

Once we have our text split up into tokens, we need to vectorize it. The simplest way
of doing this is called one-hot encoding. Here, we assign to each unique token an inte‐
ger i from 0 to the number of tokens and then represent each token as a vector con‐
taining only 0s, except for the ith entry, which contains a 1. In Python code this
would be:

idx_to_token = list(set(tokens))
token_to_idx = {token: idx for idx, token in enumerate(idx_to_token)}
one_hot = lambda token: [1 if i == token_to_idx[token] else 0
 for i in range(len(idx_to_token))]
encoded = np.asarray([one_hot(token) for token in tokens])

1.3 Preprocessing Data | 21

This should leave us with a large two-dimensional array ready for consumption.

One-hot encoding works when we process text at a character level. It also works for
word-level processing, though for texts with large vocabularies it can get unwieldy.
There are two popular encoding strategies that work around this.

The first one is to treat a document as a “bag of words.” Here, we don’t care about the
order of the words, just whether a certain word is present. We can then represent a
document as a vector with an entry for each unique token. In the simplest scheme we
just put a 1 if the word is present in that document and a 0 if not.

Since the top 100 most frequently occurring words in English make up about half of
all texts, they are not very useful for text classifying tasks; almost all documents will
contain them, so having those in our vectors doesn’t really help much. A common
strategy is to just drop them from our bag of words so the network can focus on the
words that do make a difference.

Term frequency–inverse document frequency, or tf–idf, is a more sophisticated ver‐
sion of this. Instead of storing a 1 if a token is present in a document, we store the
relative frequency of the term in the document compared to how often the term
occurs throughout the entire corpus of documents. The intuition here is that it is
more meaningful for a less common token to appear in a document than a token that
appears all the time. Scikit-learn comes with methods to calculate this automatically.

A second way to handle word-level encoding is by way of embeddings. Chapter 3 is
all about embeddings and offers a good way to understand how they work. With
embeddings we associate a vector of a certain size—typically with a length of 50 to
300—with each token. When we feed in a document represented as a sequence of
token IDs, an embedding layer will automatically look up the corresponding embed‐
ding vectors and output a two-dimensional array.

The embedding layer will learn the right weights for each term, just like any layer in a
neural network. This often takes a lot of learning, both in terms of processing and the
required amount of data. A nice aspect of embeddings, though, is that there are pre-
trained sets available for download and we can seed our embedding layer with these.
Chapter 7 has a good example of this approach.

Preprocessing of Images
Deep neural networks have turned out to be very effective when it comes to working
with images, for anything from detecting cats in videos to applying the style of differ‐
ent artists to selfies. As with text, though, it is essential to properly preprocess the
input images.

The first step is normalization. Many networks only operate on a specific size, so the
first step is to resize/crop the images to that target size. Both center cropping and

22 | Chapter 1: Tools and Techniques

direct resizing are often used, though sometimes a combination works better in order
to preserve more of the image while keeping resize distortion somewhat in check.

To normalize the colors, for each pixel we usually subtract the mean value and divide
by the standard deviation. This makes sure that all values on average center around 0
and that the nearly 70% of all values are within the comfortable [–1, 1] range. A new
development here is the use of batch normalization; rather than normalizing all data
beforehand, this subtracts the mean of the batch and divides by the standard devia‐
tion. This leads to better results and can just be made part of the network.

Data augmentation is a strategy to increase the amount of training data by adding
variations of our training images. If we add to our training data versions of our
images flipped horizontally, in a way we double our training data—a mirrored cat is
still a cat. Looking at this in another way, what we are doing is telling our network
that flips can be ignored. If all our cat pictures have the cat looking in one direction,
our network might learn that that is part of catness; adding flips undoes that.

Keras has a handy ImageDataGenerator class that you can configure to produce all
kinds of image variations, including rotations, translations, color adjustments, and
magnification. You can then use that as a data generator for the fit_generator
method on your model:

datagen = ImageDataGenerator(
 rotation_range=20,
 horizontal_flip=True)

model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
 steps_per_epoch=len(x_train) / 32, epochs=epochs)

Conclusion
Preprocessing of data is an important step before training a deep learning model. A
common thread in all of this is that we want it to be as easy as possible for networks
to learn the right thing and not be confused by irrelevant features of the input. Get‐
ting a balanced training set, creating randomized training batches, and the various
ways to normalize the data are all a big part of this.

1.3 Preprocessing Data | 23

CHAPTER 2

Getting Unstuck

Deep learning models are often treated as a black box; we pour data in at one end and
an answer comes out at the other without us having to care much about how our net‐
work learns. While it is true that deep neural nets can be remarkably good at distilling
a signal out of complex input data, the flip side of treating these networks as black
boxes is that it isn’t always clear what to do when things get stuck.

A common theme among the techniques we discuss here is that we want the network
to generalize rather than to memorize. It is worth pondering the question of why neu‐
ral networks generalize at all. Some of the models described in this book and used in
production contain millions of parameters that would allow the network to memo‐
rize inputs with very many examples. If everything goes well, though, it doesn’t do
this, but rather develops generalized rules about its input.

If things don’t go well, you can try the techniques described in this chapter. We’ll start
out by looking at how we know that we’re stuck. We’ll then look at various ways in
which we can preprocess our input data to make it easier for the network to work
with.

2.1 Determining That You Are Stuck
Problem
How do you know when your network is stuck?

Solution
Look at various metrics while the network trains.

25

The most common signs that things are not well with a neural network are that the
network is not learning anything or that it is learning the wrong thing. When we set
up the network, we specify the loss function. This determines what the network is try‐
ing to optimize for. During training the loss is continuously printed. If this value
doesn’t go down after a few iterations, we’re in trouble. The network is not learning
anything measured by its own notion of progress.

A second metric that comes in handy is accuracy. This shows the percentage of the
inputs for which the network is predicting the right answer. As the loss goes down,
the accuracy should go up. If accuracy does not go up even though the loss is decreas‐
ing, then our network is learning something, but not the thing we were hoping for.
Accuracy can take a while, though, to pick up. A complex visual network will take a
long time before it gets any labels right while still learning, so take this into account
before giving up prematurely.

The third thing to look for, and this is probably the most common way to get stuck, is
overfitting. With overfitting we see our loss decrease and our accuracy increase, but
the accuracy we see over our testing set doesn’t keep up. Assuming we have a testing
set and have added this to the metrics to track, we can see this each time an epoch
finishes. Typically the testing accuracy at first increases with the accuracy of the train‐
ing set, but then a gap appears, and oftentimes the testing accuracy even starts to
drop while the training accuracy keeps increasing.

What’s happening here is that our network is learning a direct mapping between the
inputs and the expected outputs, rather than learning generalizations. As long as it
sees an input it has seen before, everything looks cool. But confronted with a sample
from the test set, which it hasn’t seen during training, it starts to fail.

Discussion
Paying attention to the metrics that are displayed during training is a good way to
keep track of the progress of the learning process. The three metrics we discussed
here are the most important, but frameworks like Keras offer many more and the
option to build them yourselves.

2.2 Solving Runtime Errors
Problem
What should you do when your network complains about incompatible shapes?

Solution
Look at the network structure and experiment with different numbers.

26 | Chapter 2: Getting Unstuck

Keras is a great abstraction over hairier frameworks like TensorFlow or Theano, but
like any abstraction, this comes at a cost. When all is well our clearly defined model
runs happily on top of TensorFlow or Theano. When it doesn’t, though, we get an
error from the depths of the underlying framework. These errors are hard to make
sense of without understanding the intricacies of those frameworks—which is what
we wanted to avoid in the first place by using Keras.

There are two things that can help and don’t require us to go on a deep dive. The first
is to print the structure of our network. Let’s say we have a simple model that takes in
five variables and classifies into eight categories:

data_in = Input(name='input', shape=(5,))
fc = Dense(12, activation='relu')(data_in)
data_out = Dense(8, activation='sigmoid')(fc)
model = Model(inputs=[data_in], outputs=[data_out])
model.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

We can now inspect the model with:

model.summary()

Layer (type) Output Shape Param #
===
input (InputLayer) (None, 5) 0

dense_5 (Dense) (None, 12) 72

dense_6 (Dense) (None, 8) 104
===
Total params: 176
Trainable params: 176
Non-trainable params: 0

Now if we get a runtime error about an incompatible shape, of the feared form:

InvalidArgumentError: Incompatible shapes: X vs. Y

we know something internal must be wrong that isn’t easy to track down using the
stack trace. There are some other things to try, though.

First, take a look at whether any of the shapes are either X or Y. If so, that’s probably
where the problem is. Knowing that is half the work—which of course still leaves the
other half. The other thing to pay attention to is the names of the layers. Often they
come back in the error message, sometimes in a mangled form. Keras auto-assigns
names to anonymous layers, so looking at the summary is useful in this respect too. If
needed we can assign our own names, like with the input layer in the example shown
here.

2.2 Solving Runtime Errors | 27

If we can’t find the shape or the name that the runtime error is mentioning, we can
try something else before having to dive in (or post on StackOverflow): use different
numbers.

Neural networks contain loads of hyperparameters, like the sizes of the various layers.
These are usually picked because they seem reasonable, given other networks that do
similar things. But their actual value is somewhat arbitrary. In our example, does the
hidden layer really need 12 units? Would 11 do a lot worse, and would 13 lead to
overfitting?

Probably not. We tend to pick numbers that feel nice, often powers of two. So if you
are stuck on a runtime error, change these numbers and see what it does to the error
message. If the error message remains the same, the variable that you changed has
nothing to do with it. Once it starts changing, though, you know you’ve reached
something related.

This can be subtle. For example, some networks require that all batches have the same
size. If your data isn’t divisible by the batch size, your last batch will be too small and
you’ll get an error like:

Incompatible shapes: [X,784] vs. [Y,784]

Here X would be the batch size and Y the size of your last incomplete batch. You might
recognize X as your batch size, but Y is hard to place. But if you change the batch size,
Y also changes, which provides a hint as to where to look.

Discussion
Understanding errors reported by the framework that is abstracted away by Keras is
fundamentally tricky. The abstraction breaks, and we suddenly see the internals of the
machinery. The techniques from this recipe allow you to postpone looking into those
details by spotting shapes and names in the errors and, failing that, experimenting
with numbers and seeing what changes.

2.3 Checking Intermediate Results
Problem
Your network quickly gets to a promising level of accuracy but refuses to go beyond
that.

Solution
Check whether it hasn’t gotten stuck at an obvious local maximum.

28 | Chapter 2: Getting Unstuck

One situation in which this can happen is when one label is far more common than
any others, and your network quickly learns that always predicting this outcome gives
decent results. It is not hard to verify that this is happening; just feed the network a
sample of inputs and look at the outputs. If all outputs are the same, you are stuck
this way.

Some of the following recipes in this chapter offer suggestions for how to fix this.
Alternatively, you could play with the distribution of the data. If 95% of your exam‐
ples are dogs and only 5% cats, the network might not see enough cats. By artificially
changing the distribution to, say, 65%/35%, you make it a little easier for the network.

This is, of course, not without its own risks. The network might now have more of a
chance to learn about cats, but it will also learn the wrong base distribution, or prior.
This means that in case of doubt the network will now be more likely to pick “cat” as
the answer, even though, all things being equal, “dog” is more likely.

Discussion
Looking at the distribution of output labels of a network for a small sample of inputs
is an easy way to get an idea of what is actually being done, yet it is often overlooked.
Playing with the distribution is a way to try to get the network unstuck if it focuses on
just the top answer, but you should probably consider other techniques too.

There are other things to look out for in the output when a network isn’t converging
quickly; the occurrence of NaNs is an indication of exploding gradients, and if the
outputs of your network seem to be clipped and can’t seem to reach the right values,
you might have an incorrect activation function on your final layer.

2.4 Picking the Right Activation Function (for Your Final
Layer)
Problem
How do you pick the right activation function for your final layer when things
are off?

Solution
Make sure that the activation function corresponds with the intention of the network.

A good way to get started with deep learning is to find an example online somewhere
and modify it step by step until it does what you want it to do. However, if the inten‐
tion of the example network is different from what your goal, you might have to
change the activation function of the final layer. Let’s take a look at some common
choices.

2.4 Picking the Right Activation Function (for Your Final Layer) | 29

The softmax activation function makes sure that the sum of the output vector is
exactly 1. This is an appropriate activation function for networks that output exactly
one label for a given input (for example, an image classifier). The output vector will
then represent the probability distribution—if the entry for “cat” in the output vector
is .65, then the network thinks that it sees a cat with 65% certainty. Softmax only
works when there is one answer. When multiple answers are possible, give the sig‐
moid activation a try.

A linear activation function is appropriate for regression problems when we need to
predict a numeric value given an input. An example would be to predict a movie rat‐
ing given a series of movie reviews. The linear activation function will take the values
of the previous layer and multiply them with a set of weights such that it best fits the
expected output. Just as it is a good idea to normalize the input data into a [–1, 1]
range or thereabouts, it often helps to do the same for outputs. So, if our movie rat‐
ings are between 0 and 5, we’d subtract 2.5 and divide by the same when creating the
training data.

If the network outputs an image, make sure that the activation function you use is in
line with how you normalize the pixels. The standard normalization of deducting the
mean pixel value and dividing by the standard deviation results in values that center
around 0, so it won’t work with sigmoid, and since 30% of the values will fall outside
the range [–1, 1] tanh won’t be a good fit either. You can still use these, but you’d have
to change the normalization applied to your output.

Depending on what you know about the output distribution, it might be useful to do
something even more fancy. Movie ratings, for example, tend to center around 3.7 or
so, so using that as the center could well yield better results. When the actual distribu‐
tion is skewed such that values around the average are much more likely than outli‐
ers, using a tanh activation function can be appropriate. This squashes any value into
a [–1, 1] range. By mapping the expected outputs to the same range, keeping the
expected distribution in mind, we can mimic any shape of our output data.

Discussion
Picking the right output activation function is crucial, but in most cases not difficult.
If your output represents a probability distribution with one possible outcome, soft‐
max is for you; otherwise, you need to experiment.

You also need to make sure that the loss function works with the activation function
of the final layer. The loss function steers the training of the network by calculating
how “wrong” a prediction is, given an expected value. We saw that a softmax activa‐
tion function is the right choice when a network does multilabel predictions; in that
case you probably want to go with a categorical loss function like Keras’s categori
cal_crossentropy.

30 | Chapter 2: Getting Unstuck

2.5 Regularization and Dropout
Problem
Once you have detected your network is overfitting, what can you do about it?

Solution
Restrict what the network can do by using regularization and dropout.

A neural network with enough parameters can fit any input/output mapping by
memorizing. Accuracy seems great while training, but of course the network fails to
perform very well on data it hasn’t seen before and so does poorly on the test data or
indeed in production. The network is overfitting.

One obvious way to stop the network from overfitting is to reduce the number of
parameters that we have by decreasing the number of layers or making each layer
smaller. But this of course also reduces the expressive power of our network. Regula‐
rization and dropout offer us something in between by restricting the expressive
power of our network in a way that doesn’t hurt the ability to learn (too much).

With regularization we add penalties to extreme values for parameters. The intuition
here is that in order to fit an arbitrary input/output mapping, a network would need
arbitrary parameters, while learned parameters tend to be in a normal range. So,
making it harder to get to those arbitrary parameters should keep the network on the
path of learning rather than memorizing.

Application in Keras is straightforward:

dense = Dense(128,
 activation='relu',
 kernel_regularizer=regularizers.l2(0.01))(flatten)

Regularizers can be applied to the weights of the kernel or the bias of the layer, or to
the output of the layer. Which one and what penalty to use is mostly a matter of trial
and error. 0.01 seems like a popular starting value.

Dropout is a similar technique, but more radical. Rather than keeping the weights of
neurons in check, we randomly ignore a percentage of all neurons during training.

Similar to regularization, this makes it harder for a network to memorize input/
output pairs, since it can’t rely on specific neurons working during training. This
nudges the network into learning general, robust features rather than one-off, specific
ones to cover one training instance.

In Keras dropout is applied to a layer using the Dropout (pseudo)layer:

 max_pool_1x = MaxPooling1D(window)(conv_1x)
 dropout_1x = Dropout(0.3)(max_pool_1x)

2.5 Regularization and Dropout | 31

This applies a dropout of 30% to the max-pooling layer, ignoring 30% of its neurons
during training.

When doing inference, dropout is not applied. All things being equal this would
increase the output of the layer by over 40%, so the framework automatically scales
these outputs back.

Discussion
As you make your network more expressive, its tendency to overfit or memorize its
inputs rather than learn general features will increase. Both regularization and drop‐
out can play a role to reduce this effect. Both work by reducing the freedom of the
network to develop arbitrary features, by punishing extreme values (regularization)
or by ignoring the contribution of a percentage of the neurons in a layer (dropout).

An interesting alternative way to look at how networks with dropout work is to con‐
sider that if we have N neurons and we randomly switch a certain percentage of the
neurons off, we really have created a generator that can create a very large variety of
different but related networks. During training these different networks all learn the
task at hand, but at evaluation time they all run in parallel and their average opinion
is taken. So even if some of them start overfitting, chances are that this is drowned
out in the aggregate vote.

2.6 Network Structure, Batch Size, and Learning Rate
Problem
How do you find the best network structure, batch size, and learning rate for a given
problem?

Solution
Start small and work your way up.

Once we’ve identified the sort of network we’ll need to solve a specific problem, we
still have to make a number of implementation decisions. The more important
among those are decisions about the network structure, the learning rate, and the
batch size.

Let’s start with the network structure. How many layers will we have? How big will
each of those layers be? A decent strategy is to start with the smallest sizes that could
possibly work. Being all enthusiastic about the “deep” in deep learning, there is a cer‐
tain temptation to start with many layers. But typically if a one- or two-layer network
doesn’t perform at all, chances are that adding more layers isn’t going to really help.

32 | Chapter 2: Getting Unstuck

Continuing with the size of each individual layer, larger layers can learn more, but
they also take longer and have more space to hide problems. As with the number of
layers, start small and expand from there. If you suspect that the expressive power of
a smaller network will be insufficient to make any sense of your data, consider simpli‐
fying your data; start with a small network that only distinguishes between the two
most popular labels and then gradually increase the complexity of both the data and
the network.

The batch size is the number of samples we feed into the network before adjusting the
weights. The larger the batch size, the longer it takes to finish one, but the more accu‐
rate the gradient is. In order to get results quickly, it is advisable to start with a small‐
ish batch size—32 seems to work well.

The learning rate determines how much we’ll change the weights in our network in
the direction of the derived gradient. The higher the rate, the quicker we move
through the landscapes. Too big a rate, though, and we risk skipping over the good
bits and we start thrashing. When we take into account that a smaller batch size leads
to a less accurate gradient, it stands to reason that we should combine a small batch
size with a smaller learning rate. So, the suggestion here is again to start out small
and, when things work, experiment with larger batch rates and higher learning rates.

Training on GPUs impacts this assessment. GPUs efficiently run
steps in parallel, so there is no real reason to pick a batch size that
is so small that it leaves part of the GPU idle. What batch size that
is depends of course on the network, but as long as the time per
batch doesn’t increase by much when you increase the batch size,
you’re still on the right side of things. A second consideration when
running on GPUs is memory. When a batch no longer fits in the
memory of the GPU things start to fail and you’ll start to see out of
memory messages.

Discussion
Network structure, batch size, and learning rate are some of the important hyper
parameters that impact the performance of networks but have little to do with the
actual strategy. For all of these a reasonable strategy is to start small (but big enough
that things still work) and go bigger step by step, observing that the network still per‐
forms.

As we increase the number of layers and the size of each layer, we’ll start to see symp‐
toms of overfitting at some point (training and testing accuracy start to diverge, for
example). That might be a good time to look at regularization and dropout.

2.6 Network Structure, Batch Size, and Learning Rate | 33

CHAPTER 3

Calculating Text Similarity Using Word
Embeddings

Before we get started, this is the first chapter with actual code in it.
Chances are you skipped straight to here, and who would blame
you? To follow the recipes it really helps though if you have the
accompanying code up and running. You can easily do this by exe‐
cuting the following commands in a shell:

git clone \
 https://github.com/DOsinga/deep_learning_cookbook.git
cd deep_learning_cookbook
python3 -m venv venv3
source venv3/bin/activate
pip install -r requirements.txt
jupyter notebook

You can find a more detailed explanation in “What Do You Need to
Know?” on page 9.

In this chapter we’ll look at word embeddings and how they can help us to calculate
the similarities between pieces of text. Word embeddings are a powerful technique
used in natural language processing to represent words as vectors in an n-
dimensional space. The interesting thing about this space is that words that have sim‐
ilar meanings will appear close to each other.

The main model we’ll use here is a version of Google’s Word2vec. This is not a deep
neural model. In fact, it is no more than a big lookup table from word to vector and
therefore hardly a model at all. The Word2vec embeddings are produced as a side
effect of training a network to predict a word from context for sentences taken from
Google News. Moreover, it is possibly the best-known example of an embedding, and
embeddings are an important concept in deep learning.

35

Once you start looking for them, high-dimensional spaces with semantic properties
start popping up everywhere in deep learning. We can build a movie recommender
by projecting movies into a high-dimensional space (Chapter 4) or create a map of
handwritten digits using only two dimensions (Chapter 13). Image recognition net‐
works project images into a space such that similar images are near to each other
(Chapter 10).

In the current chapter we’ll focus on just word embeddings. We’ll start with using a
pretrained word embedding model to calculate word similarities, then show some
interesting Word2vec math. We’ll then explore how to visualize these high-
dimensional spaces.

Next, we’ll take a look at how we can exploit the semantic properties of word embed‐
dings like Word2vec for domain-specific ranking. We’ll treat the words and their
embeddings as the entities they represent, with some interesting results. We’ll start
with finding entity classes in Word2vec embeddings—in this case, countries. We’ll
then show how to rank terms against these countries and how to visualize these
results on a map.

Word embeddings are a powerful way to map words to vectors and have many uses.
They are often used as a preprocessing step for text.

There are two Python notebooks associated with this chapter:

03.1 Using pretrained word embeddings
03.2 Domain specific ranking using word2vec cosine distance

3.1 Using Pretrained Word Embeddings to Find Word
Similarity
Problem
You need to find out whether two words are similar but not equal, for example when
you’re verifying user input and you don’t want to require the user to exactly enter the
expected word.

Solution
You can use a pretrained word embedding model. We’ll use gensim in this example, a
useful library in general for topic modeling in Python.

The first step is to acquire a pretrained model. There are a number of pretrained
models available for download on the internet, but we’ll go with the Google News
one. It has embeddings for 3 million words and was trained on roughly 100 billion
words taken from the Google News archives. Downloading it will take a while, so
we’ll cache the file locally:

36 | Chapter 3: Calculating Text Similarity Using Word Embeddings

MODEL = 'GoogleNews-vectors-negative300.bin'
path = get_file(MODEL + '.gz',
 'https://s3.amazonaws.com/dl4j-distribution/%s.gz' % MODEL)
unzipped = os.path.join('generated', MODEL)
if not os.path.isfile(unzipped):
 with open(unzipped, 'wb') as fout:
 zcat = subprocess.Popen(['zcat'],
 stdin=open(path),
 stdout=fout
)
 zcat.wait()

Downloading data from GoogleNews-vectors-negative300.bin.gz
1647050752/1647046227 [==============================] - 71s 0us/step

Now that we have the model downloaded, we can load it into memory. The model is
quite big and this will take around 5 GB of RAM:

model = gensim.models.KeyedVectors.load_word2vec_format(MODEL, binary=True)

Once the model has finished loading, we can use it to find similar words:

model.most_similar(positive=['espresso'])

[(u'cappuccino', 0.6888186931610107),
 (u'mocha', 0.6686209440231323),
 (u'coffee', 0.6616827249526978),
 (u'latte', 0.6536752581596375),
 (u'caramel_macchiato', 0.6491267681121826),
 (u'ristretto', 0.6485546827316284),
 (u'espressos', 0.6438628435134888),
 (u'macchiato', 0.6428250074386597),
 (u'chai_latte', 0.6308028697967529),
 (u'espresso_cappuccino', 0.6280542612075806)]

Discussion
Word embeddings associate an n-dimensional vector with each word in the vocabu‐
lary in such a way that similar words are near each other. Finding similar words is a
mere nearest-neighbor search, for which there are efficient algorithms even in high-
dimensional spaces.

Simplifying things somewhat, the Word2vec embeddings are obtained by training a
neural network to predict a word from its context. So, we ask the network to predict
which word it should pick for X in a series of fragments; for example, “the cafe served
a X that really woke me up.”

This way words that can be inserted into similar patterns will get vectors that are
close to each other. We don’t care about the actual task, just about the assigned
weights, which we will get as a side effect of training this network.

3.1 Using Pretrained Word Embeddings to Find Word Similarity | 37

Later in this book we’ll see how word embeddings can also be used to feed words into
a neural network. It is much more feasible to feed a 300-dimensional embedding vec‐
tor into a network than a 3-million-dimensional one that is one-hot encoded. More‐
over, a network fed with pretrained word embeddings doesn’t have to learn the rela‐
tionships between the words, but can start with the real task at hand immediately.

3.2 Word2vec Math
Problem
How can you automatically answer questions of the form “A is to B as C is to what?”

Solution
Use the semantic properties of the Word2vec model. The gensim library makes this
rather straightforward:

def A_is_to_B_as_C_is_to(a, b, c, topn=1):
 a, b, c = map(lambda x:x if type(x) == list else [x], (a, b, c))
 res = model.most_similar(positive=b + c, negative=a, topn=topn)
 if len(res):
 if topn == 1:
 return res[0][0]
 return [x[0] for x in res]
 return None

We can now apply this to arbitrary words—for example, to find what relates to “king”
the way “son” relates to “daughter”:

A_is_to_B_as_C_is_to('man', 'woman', 'king')

u'queen'

We can also use this approach to look up the capitals of selected countries:

for country in 'Italy', 'France', 'India', 'China':
 print('%s is the capital of %s' %
 (A_is_to_B_as_C_is_to('Germany', 'Berlin', country), country))

Rome is the capital of Italy
Paris is the capital of France
Delhi is the capital of India
Beijing is the capital of China

or to find the main products of companies (note the # placeholder for any number
used in these embeddings):

for company in 'Google', 'IBM', 'Boeing', 'Microsoft', 'Samsung':
 products = A_is_to_B_as_C_is_to(
 ['Starbucks', 'Apple'], ['Starbucks_coffee', 'iPhone'], company, topn=3)

38 | Chapter 3: Calculating Text Similarity Using Word Embeddings

 print('%s -> %s' %
 (company, ', '.join(products)))

Google -> personalized_homepage, app, Gmail
IBM -> DB2, WebSphere_Portal, Tamino_XML_Server
Boeing -> Dreamliner, airframe, aircraft
Microsoft -> Windows_Mobile, SyncMate, Windows
Samsung -> MM_A###, handset, Samsung_SCH_B###

Discussion
As we saw in the previous step, the vectors associated with the words encode the
meaning of the words—words that are similar to each other have vectors that are
close to each other. It turns out that the difference between word vectors also encodes
the difference between words, so if we take the vector for the word “son” and deduct
the vector for the word “daughter” we end up with a difference that can be interpreted
as “going from male to female.” If we add this difference to the vector for the word
“king” we end up near the vector for the word “queen”:

The most_similar method takes one or more positive words and one or more nega‐
tive words. It looks up the corresponding vectors, then deducts the negative from the
positive and returns the words that have vectors nearest to the resulting vector.

So in order to answer the question “A is to B as C is to?” we want to deduct A from B
and then add C, or call most_similar with positive = [B, C] and negative = [A].
The example A_is_to_B_as_C_is_to adds two small features to this behavior. If we
request only one example, it will return a single item, rather than a list with one item.
Similarly, we can return either lists or single items for A, B, and C.

3.2 Word2vec Math | 39

Being able to provide lists turned out to be useful in the product example. We asked
for three products per company, which makes it more important to get the vector
exactly right than if we only asked for one. By providing “Starbucks” and “Apple,” we
get a more exact vector for the concept of “is a product of.”

3.3 Visualizing Word Embeddings
Problem
You want to get some insight into how word embeddings partition a set of objects.

Solution
A 300-dimensional space is hard to browse, but luckily we can use an algorithm
called t-distributed stochastic neighbor embedding (t-SNE) to fold a higher-
dimensional space into something more comprehensible, like two dimensions.

Let’s say we want to look at how three sets of terms are partitioned. We’ll pick coun‐
tries, sports, and drinks:

beverages = ['espresso', 'beer', 'vodka', 'wine', 'cola', 'tea']
countries = ['Italy', 'Germany', 'Russia', 'France', 'USA', 'India']
sports = ['soccer', 'handball', 'hockey', 'cycling', 'basketball', 'cricket']

items = beverages + countries + sports

Now let’s look up their vectors:

item_vectors = [(item, model[item])
 for item in items
 if item in model]

We can now use t-SNE to find the clusters in the 300-dimensional space:

vectors = np.asarray([x[1] for x in item_vectors])
lengths = np.linalg.norm(vectors, axis=1)
norm_vectors = (vectors.T / lengths).T
tsne = TSNE(n_components=2, perplexity=10,
 verbose=2).fit_transform(norm_vectors)

Let’s use matplotlib to show the results in a nice scatter plot:
x=tsne[:,0]
y=tsne[:,1]

fig, ax = plt.subplots()
ax.scatter(x, y)

for item, x1, y1 in zip(item_vectors, x, y):
 ax.annotate(item[0], (x1, y1))

plt.show()

40 | Chapter 3: Calculating Text Similarity Using Word Embeddings

The result is:

Discussion
t-SNE is a clever algorithm; you give it a set of points in a high-dimensional space,
and it iteratively tries to find the best projection onto a lower-dimensional space
(usually a plane) that maintains the distances between the points as well as possible. It
is therefore very suitable for visualizing higher dimensions like (word) embeddings.

For more complex situations, the perplexity parameter is something to play around
with. This variable loosely determines the balance between local accuracy and overall
accuracy. Setting it to a low value creates small clusters that are locally accurate; set‐
ting it higher leads to more local distortions, but with better overall clusters.

3.4 Finding Entity Classes in Embeddings
Problem
In high-dimensional spaces there are often subspaces that contain only entities of one
class. How do you find those spaces?

3.4 Finding Entity Classes in Embeddings | 41

Solution
Apply a support vector machine (SVM) on a set of examples and counterexamples.
For example, let’s find the countries in the Word2vec space. We’ll start by loading up
the model again and exploring things similar to a country, Germany:

model = gensim.models.KeyedVectors.load_word2vec_format(MODEL, binary=True)
model.most_similar(positive=['Germany'])

[(u'Austria', 0.7461062073707581),
 (u'German', 0.7178748846054077),
 (u'Germans', 0.6628648042678833),
 (u'Switzerland', 0.6506867408752441),
 (u'Hungary', 0.6504981517791748),
 (u'Germnay', 0.649348258972168),
 (u'Netherlands', 0.6437495946884155),
 (u'Cologne', 0.6430779099464417)]

As you can see there are a number of countries nearby, but words like “German” and
the names of German cities also show up in the list. We could try to construct a vec‐
tor that best represents the concept of “country” by adding up the vectors of many
countries rather than just using Germany, but that only goes so far. The concept of
country in the embedding space isn’t a point, it is a shape. What we need is a real clas‐
sifier.

Support vector machines have proven effective for classification tasks like this. Scikit-
learn has an easy-to-deploy solution. The first step is to build a training set. For this
recipe getting positive examples is not hard since there are only so many countries:

positive = ['Chile', 'Mauritius', 'Barbados', 'Ukraine', 'Israel',
 'Rwanda', 'Venezuela', 'Lithuania', 'Costa_Rica', 'Romania',
 'Senegal', 'Canada', 'Malaysia', 'South_Korea', 'Australia',
 'Tunisia', 'Armenia', 'China', 'Czech_Republic', 'Guinea',
 'Gambia', 'Gabon', 'Italy', 'Montenegro', 'Guyana', 'Nicaragua',
 'French_Guiana', 'Serbia', 'Uruguay', 'Ethiopia', 'Samoa',
 'Antarctica', 'Suriname', 'Finland', 'Bermuda', 'Cuba', 'Oman',
 'Azerbaijan', 'Papua', 'France', 'Tanzania', 'Germany' …]

Having more positive examples is of course better, but for this example using 40–50
will give us a good idea of how the solution works.

We also need some negative examples. We sample these directly from the general
vocabulary of the Word2vec model. We could get unlucky and draw a country and
put it in the negative examples, but given the fact that we have 3 million words in the
model and there are less than 200 countries in the world, we’d have to be very unlucky
indeed:

negative = random.sample(model.vocab.keys(), 5000)
negative[:4]

[u'Denys_Arcand_Les_Invasions',
 u'2B_refill',

42 | Chapter 3: Calculating Text Similarity Using Word Embeddings

 u'strained_vocal_chords',
 u'Manifa']

Now we’ll create a labeled training set based on the positive and negative examples.
We’ll use 1 as the label for something being a country, and 0 for it not being a country.
We’ll follow the convention of storing the training data in a variable X and the labels
in a variable y:

labelled = [(p, 1) for p in positive] + [(n, 0) for n in negative]
random.shuffle(labelled)
X = np.asarray([model[w] for w, l in labelled])
y = np.asarray([l for w, l in labelled])

Let’s train the model. We’ll set aside a fraction of the data to evaluate how we are
doing:

TRAINING_FRACTION = 0.7
cut_off = int(TRAINING_FRACTION * len(labelled))
clf = svm.SVC(kernel='linear')
clf.fit(X[:cut_off], y[:cut_off])

The training should happen almost instantaneously even on a not very powerful
computer since our dataset is relatively small. We can have a peek at how we are
doing by looking at how many times the model has the right prediction for the bits of
the eval set:

res = clf.predict(X[cut_off:])

missed = [country for (pred, truth, country) in
 zip(res, y[cut_off:], labelled[cut_off:]) if pred != truth]
100 - 100 * float(len(missed)) / len(res), missed

The results you get will depend a bit on the positive countries selected and which
negative samples you happened to draw. I mostly get a list of countries that it missed
—typically because the country name also means something else, like Jordan, but
there are also some genuine misses in there. The precision comes out at 99.9% or so.

We can now run the classifier over all of the words to extract the countries:

res = []
for word, pred in zip(model.index2word, all_predictions):
 if pred:
 res.append(word)
 if len(res) == 150:
 break
random.sample(res, 10)

[u'Myanmar',
 u'countries',
 u'Sri_Lanka',
 u'Israelis',
 u'Australia',
 u'Pyongyang',

3.4 Finding Entity Classes in Embeddings | 43

 u'New_Hampshire',
 u'Italy',
 u'China',
 u'Philippine']

The results are pretty good, though not perfect. The word “countries” itself, for exam‐
ple, is classified as a country, as are entities like continents or US states.

Discussion
Support vector machines are effective tools when it comes to finding classes within a
higher-dimensional space like word embeddings. They work by trying to find hyper‐
planes that separate the positive examples from the negative examples.

Countries in Word2vec are all somewhat near to each other since they share a seman‐
tic aspect. SVMs help us find the cloud of countries and come up with boundaries.
The following diagram visualizes this in two dimensions:

SVMs can be used for all kinds of ad hoc classifiers in machine learning since they are
effective even if the number of dimensions is greater than the number of samples, like
in this case. The 300 dimensions could allow the model to overfit the data, but
because the SVM tries to find a simple model to fit the data, we can still generalize
from a dataset as small as a few dozen examples.

44 | Chapter 3: Calculating Text Similarity Using Word Embeddings

The results achieved are pretty good, though it is worth noting that in a situation
where we have 3 million negative examples, 99.7% precision would still give us 9,000
false positives, drowning out the actual countries.

3.5 Calculating Semantic Distances Inside a Class
Problem
How do you find the most relevant items from a class for a given criterion?

Solution
Given a class, for example countries, we can rank the members of that class against a
criterion, by looking at the relative distances:

country_to_idx = {country['name']: idx for idx, country in enumerate(countries)}
country_vecs = np.asarray([model[c['name']] for c in countries])
country_vecs.shape

(184, 300)

We can now, as before, extract the vectors for the countries into a numpy array that
lines up with the countries:

countries = list(country_to_cc.keys())
country_vecs = np.asarray([model[c] for c in countries])

A quick sanity check to see which countries are most like Canada:

dists = np.dot(country_vecs, country_vecs[country_to_idx['Canada']])
for idx in reversed(np.argsort(dists)[-8:]):
 print(countries[idx], dists[idx])

Canada 7.5440245
New_Zealand 3.9619699
Finland 3.9392405
Puerto_Rico 3.838145
Jamaica 3.8102934
Sweden 3.8042784
Slovakia 3.7038736
Australia 3.6711009

The Caribbean countries are somewhat surprising and a lot of the news about Canada
must be related to hockey, given the appearance of Slovakia and Finland in the list,
but otherwise it doesn’t look unreasonable.

Let’s switch gears and do some ranking for an arbitrary term over the set of countries.
For each country we’ll calculate the distance between the name of the country and the
term we want to rank against. Countries that are “closer” to the term are more rele‐
vant for the term:

3.5 Calculating Semantic Distances Inside a Class | 45

def rank_countries(term, topn=10, field='name'):
 if not term in model:
 return []
 vec = model[term]
 dists = np.dot(country_vecs, vec)
 return [(countries[idx][field], float(dists[idx]))
 for idx in reversed(np.argsort(dists)[-topn:])]

For example:

rank_countries('cricket')

[('Sri_Lanka', 5.92276668548584),
 ('Zimbabwe', 5.336524486541748),
 ('Bangladesh', 5.192488670349121),
 ('Pakistan', 4.948408126831055),
 ('Guyana', 3.9162840843200684),
 ('Barbados', 3.757995128631592),
 ('India', 3.7504401206970215),
 ('South_Africa', 3.6561498641967773),
 ('New_Zealand', 3.642028331756592),
 ('Fiji', 3.608567714691162)]

Since the Word2vec model we are using was trained on Google News, the ranker will
return countries that are mostly known for the given term in the recent news. India
might be more often mentioned for cricket, but as long as it is also covered for other
things, Sri Lanka can still win.

Discussion
In spaces where we have members of different classes projected into the same dimen‐
sions, we can use the cross-class distances as a measure of affinity. Word2vec doesn’t
quite represent a conceptual space (the word “Jordan” can refer to the river, the coun‐
try, or a person), but it is good enough to nicely rank countries on relevance for vari‐
ous concepts.

A similar approach is often taken when building recommender systems. For the Net‐
flix challenge, for example, a popular strategy was to use user ratings for movies as a
way to project users and movies into a shared space. Movies that are close to a user
are then expected to be rated highly by that user.

In situations where we have two spaces that are not the same, we can still use this
trick if we can calculate the projection matrix to go from one space to the other. This
is possible if we have enough candidates whose positions we know in both spaces.

46 | Chapter 3: Calculating Text Similarity Using Word Embeddings

3.6 Visualizing Country Data on a Map
Problem
How can you visalize country rankings from an experiment on a map?

Solution
GeoPandas is a perfect tool to visualize numerical data on top of a map.

This nifty library combines the power of Pandas with geographical primitives and
comes preloaded with a few maps. Let’s load up the world:

world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world.head()

This shows us some basic information about a set of countries. We can add a column
to the world object based on our rank_countries function:

def map_term(term):
 d = {k.upper(): v for k, v in rank_countries(term,
 topn=0,
 field='cc3')}
 world[term] = world['iso_a3'].map(d)
 world[term] /= world[term].max()
 world.dropna().plot(term, cmap='OrRd')

map_term('coffee')

This draws, for example, the map for coffee quite nicely, highlighting the coffee con‐
suming countries and the coffee producing countries.

3.6 Visualizing Country Data on a Map | 47

Discussion
Visualizing data is an important technique for machine learning. Being able to look at
the data, whether it is the input or the result of some algorithm, allows us to quickly
spot anomalies. Do people in Greenland really drink that much coffee? Or are we see‐
ing an artifact because of “Greenlandic coffee” (a variation on Irish coffee)? And
those countries in the middle of Africa—do they really neither drink nor produce
coffee? Or do we just have no data on them because they don’t occur in our embed‐
dings?

GeoPandas is the perfect tool to analyze geographically coded information and builds
on the general data capabilities of Pandas, which we’ll see more of in Chapter 6.

48 | Chapter 3: Calculating Text Similarity Using Word Embeddings

CHAPTER 4

Building a Recommender System Based on
Outgoing Wikipedia Links

Recommender systems are traditionally trained on previously collected ratings from
users. We want to predict ratings from users, so starting with historical ratings feels
like a natural fit. However, this requires us to have a substantial set of ratings before
we can get going and it doesn’t allow us to do a good job on new items for which we
don’t have ratings yet. Moreover, we deliberately ignore the metainformation that we
have on items.

In this chapter you’ll explore how to build a simple movie recommender system
based solely on outgoing Wikipedia links. You’ll start by extracting a training set from
Wikipedia and then train embeddings based on these links. You’ll then implement a
simple support vector machine classifier to give recommendations. Finally, you’ll
explore how you can use your newly trained embeddings to predict review scores for
the movies.

The code in this chapter can be found in these notebooks:

04.1 Collect movie data from Wikipedia
04.2 Build a recommender system based on outgoing Wikipedia links

4.1 Collecting the Data
Problem
You want to obtain a dataset for training for a specific domain, like movies.

Solution
Parse a Wikipedia dump and extract only the pages that are movies.

49

The code in this recipe shows how to fetch and extract training
data from Wikipedia, which is a very useful skill. However, down‐
loading and processing a full dump takes a rather long time. The
data directory of the notebook folder contains the top 10,000 mov‐
ies pre-extracted that we’ll use in the rest of the chapter, so you
don’t need to run the steps in this recipe.

Let’s start by downloading a recent dump from Wikipedia. You can easily do this
using your favorite browser, and if you don’t need the very latest version, you should
probably pick a nearby mirror. But you can also do it programmatically. Here’s how to
get the latest dump pages:

index = requests.get('https://dumps.wikimedia.org/backup-index.html').text
soup_index = BeautifulSoup(index, 'html.parser')
dumps = [a['href'] for a in soup_index.find_all('a')
 if a.has_attr('href') and a.text[:-1].isdigit()]

We’ll now go through the dumps and find the newest one that has actually finished
processing:

for dump_url in sorted(dumps, reverse=True):
 print(dump_url)
 dump_html = index = requests.get(
 'https://dumps.wikimedia.org/enwiki/' + dump_url).text
 soup_dump = BeautifulSoup(dump_html, 'html.parser')
 pages_xml = [a['href'] for a in soup_dump.find_all('a')
 if a.has_attr('href')
 and a['href'].endswith('-pages-articles.xml.bz2')]
 if pages_xml:
 break
 time.sleep(0.8)

Note the sleep to stay under the rate limiting of Wikipedia. Now let’s fetch the dump:

wikipedia_dump = pages_xml[0].rsplit('/')[-1]
url = url = 'https://dumps.wikimedia.org/' + pages_xml[0]
path = get_file(wikipedia_dump, url)
path

The dump we retrieved is a bz2-compressed XML file. We’ll use sax to parse the
Wikipedia XML. We’re interested in the <title> and the <page> tags so our Content
Handler looks like this:

class WikiXmlHandler(xml.sax.handler.ContentHandler):
 def __init__(self):
 xml.sax.handler.ContentHandler.__init__(self)
 self._buffer = None
 self._values = {}
 self._movies = []
 self._curent_tag = None

50 | Chapter 4: Building a Recommender System Based on Outgoing Wikipedia Links

 def characters(self, content):
 if self._curent_tag:
 self._buffer.append(content)

 def startElement(self, name, attrs):
 if name in ('title', 'text'):
 self._curent_tag = name
 self._buffer = []

 def endElement(self, name):
 if name == self._curent_tag:
 self._values[name] = ' '.join(self._buffer)

 if name == 'page':
 movie = process_article(**self._values)
 if movie:
 self._movies.append(movie)

For each <page> tag this collects the contents of the title and of the text into the
self._values dictionary and calls process_article with the collected values.

Although Wikipedia started out as a hyperlinked text-based encyclopedia, over the
years it has developed into a more structured data dump. One way this is done is by
having pages link back to so-called category pages. These links function as tags. The
page for the film One Flew Over the Cuckoo’s Nest links to the category page “1975
films,” so we know it is a movie from 1975. Unfortunately, there is no such thing as a
category page for just movies. Fortunately, there is a better way: Wikipedia templates.

Templates started out as a way to make sure that pages that contain similar informa‐
tion have that information rendered in the same way. The “infobox” template is very
useful for data processing. Not only does it contain a list of key/value pairs applicable
to the subject of the page, but it also has a type. One of the types is “film,” which
makes the task of extracting all movies a lot easier.

For each movie we want to extract the name, the outgoing links and, just because we
can, the properties stored in the infobox. The aptly named mwparserfromhell does a
decent job of parsing Wikipedia:

def process_article(title, text):
 rotten = [(re.findall('\d\d?\d?%', p),
 re.findall('\d\.\d\/\d+|$', p), p.lower().find('rotten tomatoes'))
 for p in text.split('\n\n')]
 rating = next(((perc[0], rating[0]) for perc, rating, idx in rotten
 if len(perc) == 1 and idx > -1), (None, None))
 wikicode = mwparserfromhell.parse(text)
 film = next((template for template in wikicode.filter_templates()
 if template.name.strip().lower() == 'infobox film'),
 None)
 if film:
 properties = {param.name.strip_code().strip():

4.1 Collecting the Data | 51

 param.value.strip_code().strip()
 for param in film.params
 if param.value.strip_code().strip()
 }
 links = [x.title.strip_code().strip()
 for x in wikicode.filter_wikilinks()]
 return (title, properties, links) + rating

We can now feed the bzipped dump into the parser:

parser = xml.sax.make_parser()
handler = WikiXmlHandler()
parser.setContentHandler(handler)
for line in subprocess.Popen(['bzcat'],
 stdin=open(path),
 stdout=subprocess.PIPE).stdout:
 try:
 parser.feed(line)
 except StopIteration:
 break

Finally, let’s save the results so next time we need the data, we don’t have to process
for hours:

with open('wp_movies.ndjson', 'wt') as fout:
 for movie in handler._movies:
 fout.write(json.dumps(movie) + '\n')

Discussion
Wikipedia is not only a great resource to answer questions about almost any area of
human knowledge; it also is the starting point for many deep learning experiments.
Knowing how to parse the dumps and extract the relevant bits is a skill useful for
many projects.

At 13 GB the dumps are sizeable downloads. Parsing the Wikipedia markup language
comes with its own challenges: the language has grown organically over the years and
doesn’t seem to have a strong underlying design. But with today’s fast connections
and some great open source libraries to help with the parsing, it has all become quite
doable.

In some situations the Wikipedia API might be more appropriate. This REST inter‐
face to Wikipedia allows you to search and query in a number of powerful ways and
only fetch the articles that you need. Getting all the movies that way would take a
long time given the rate limiting, but for smaller domains it is an option.

If you end up parsing Wikipedia for many projects, it might be worth it to first
import the dump into a database like Postgres so you can query the dataset directly.

52 | Chapter 4: Building a Recommender System Based on Outgoing Wikipedia Links

4.2 Training Movie Embeddings
Problem
How can you use link data between entities to produce suggestions like “If you liked
this, you might also be interested in that”?

Solution
Train embeddings using some metainformation as connectors. This recipe builds on
the previous one by using the movies and links extracted there. To make the dataset a
bit smaller and less noisy, we’ll work with only the top 10,000 movies determined by
popularity on Wikipedia.

We’ll treat the outgoing links as the connectors. The intuition here is that movies that
link to the same page are similar. They might have the same director or be of the
same genre. As the model trains, it learns not only which movies are similar, but also
which links are similar. This way it can generalize and discover that a link to the year
1978 has a similar meaning as a link to 1979, which in turn helps with movie similar‐
ity.

We’ll start by counting the outgoing links as a quick way to see whether what we have
is reasonable:

link_counts = Counter()
for movie in movies:
 link_counts.update(movie[2])
link_counts.most_common(3)

[(u'Rotten Tomatoes', 9393),
 (u'Category:English-language films', 5882),
 (u'Category:American films', 5867)]

Our model’s task is to determine whether a certain link can be found on the Wikipe‐
dia page of a movie, so we need to feed it labeled examples of matches and non‐
matches. We’ll keep only links that occur at least three times and build a list of all
valid (link, movie) pairs, which we’ll store for quick lookups later. We keep the same
handy as a set for quick lookups later:

top_links = [link for link, c in link_counts.items() if c >= 3]
link_to_idx = {link: idx for idx, link in enumerate(top_links)}
movie_to_idx = {movie[0]: idx for idx, movie in enumerate(movies)}
pairs = []
for movie in movies:
 pairs.extend((link_to_idx[link], movie_to_idx[movie[0]])
 for link in movie[2] if link in link_to_idx)
pairs_set = set(pairs)

4.2 Training Movie Embeddings | 53

We are now ready to introduce our model. Schematically, we take both the link_id
and the movie_id as a number and feed those into their respective embedding layers.
The embedding layer will allocate a vector of embedding_size for each possible input.
We then set the dot product of these two vectors to be the output of our model. The
model will learn weights such that this dot product will be close to the label. These
weights will then project movies and links into a space such that movies that are simi‐
lar end up in a similar location:

def movie_embedding_model(embedding_size=30):
 link = Input(name='link', shape=(1,))
 movie = Input(name='movie', shape=(1,))
 link_embedding = Embedding(name='link_embedding',
 input_dim=len(top_links), output_dim=embedding_size)(link)
 movie_embedding = Embedding(name='movie_embedding',
 input_dim=len(movie_to_idx), output_dim=embedding_size)(movie)
 dot = Dot(name='dot_product', normalize=True, axes=2)(
 [link_embedding, movie_embedding])
 merged = Reshape((1,))(dot)
 model = Model(inputs=[link, movie], outputs=[merged])
 model.compile(optimizer='nadam', loss='mse')
 return model

model = movie_embedding_model()

We’ll feed the model using a generator. The generator yields batches of data made up
of positive and negative examples.

We sample the positive samples from the pairs array and then fill it up with negative
examples. The negative examples are randomly picked and we make sure they are not
in the pairs_set. We then return the data in a format that our network expects, an
input/output tuple:

def batchifier(pairs, positive_samples=50, negative_ratio=5):
 batch_size = positive_samples * (1 + negative_ratio)
 batch = np.zeros((batch_size, 3))
 while True:
 for idx, (link_id, movie_id) in enumerate(
 random.sample(pairs, positive_samples)):
 batch[idx, :] = (link_id, movie_id, 1)
 idx = positive_samples
 while idx < batch_size:
 movie_id = random.randrange(len(movie_to_idx))
 link_id = random.randrange(len(top_links))
 if not (link_id, movie_id) in pairs_set:
 batch[idx, :] = (link_id, movie_id, -1)
 idx += 1
 np.random.shuffle(batch)
 yield {'link': batch[:, 0], 'movie': batch[:, 1]}, batch[:, 2]

54 | Chapter 4: Building a Recommender System Based on Outgoing Wikipedia Links

Time to train the model:

positive_samples_per_batch=512

model.fit_generator(
 batchifier(pairs,
 positive_samples=positive_samples_per_batch,
 negative_ratio=10),
 epochs=25,
 steps_per_epoch=len(pairs) // positive_samples_per_batch,
 verbose=2
)

Training times will depend on your hardware, but if you start with the 10,000 movie
dataset they should be fairly short, even on a laptop without GPU acceleration.

We can now extract the movie embeddings from our model by accessing the weights
of the movie_embedding layer. We normalize them so we can use the dot product as
an approximation of the cosine similarity:

movie = model.get_layer('movie_embedding')
movie_weights = movie.get_weights()[0]
lens = np.linalg.norm(movie_weights, axis=1)
normalized = (movie_weights.T / lens).T

Now let’s see if the embeddings make some sense:

def neighbors(movie):
 dists = np.dot(normalized, normalized[movie_to_idx[movie]])
 closest = np.argsort(dists)[-10:]
 for c in reversed(closest):
 print(c, movies[c][0], dists[c])

neighbors('Rogue One')

29 Rogue One 0.9999999
3349 Star Wars: The Force Awakens 0.9722805
101 Prometheus (2012 film) 0.9653338
140 Star Trek Into Darkness 0.9635347
22 Jurassic World 0.962336
25 Star Wars sequel trilogy 0.95218825
659 Rise of the Planet of the Apes 0.9516557
62 Fantastic Beasts and Where to Find Them (film) 0.94662267
42 The Avengers (2012 film) 0.94634
37 Avatar (2009 film) 0.9460137

Discussion
Embeddings are a useful technique, and not just for words. In this recipe we’ve
trained a simple network and produced embeddings for movies with reasonable
results. This technique can be applied any time we have a way to connect items. In

4.2 Training Movie Embeddings | 55

this case we used the outgoing Wikipedia links, but we could also use incoming links
or the words that appear on the page.

The model we trained here is extremely simple. All we do is ask it to come up with an
embedding space such that the combination of the vector for the movie and the vec‐
tor for the link can be used to predict whether or not they will co-occur. This forces
the network to project movies into a space such that similar movies end up in a simi‐
lar location. We can use this space to find similar movies.

In the Word2vec model we use the context of a word to predict the word. In the
example of this recipe we don’t use the context of the link. For outgoing links it
doesn’t seem like a particularly useful signal, but if we were using incoming links, it
might have made sense. Pages linking to movies do this in a certain order, and we
could use the context of the links to improve our embedding.

Alternatively, we could use the actual Word2vec code and run it over any of the pages
that link to movies, but keep the links to movies as special tokens. This would then
create a mixed movie and word embedding space.

4.3 Building a Movie Recommender
Problem
How can you build a recommender system based on embeddings?

Solution
Use a support vector machine to separate the positively ranked items from the nega‐
tively ranked items.

The previous recipe let us cluster movies and make suggestions like “If you liked
Rogue One, you should also check out Interstellar.” In a typical recommender system
we want to show suggestions based on a series of movies that the user has rated. As
we did in Chapter 3, we can use an SVM to do just this. Let’s take the best and worst
movies according to Rolling Stone from 2015 and pretend they are user ratings:

best = ['Star Wars: The Force Awakens', 'The Martian (film)',
 'Tangerine (film)', 'Straight Outta Compton (film)',
 'Brooklyn (film)', 'Carol (film)', 'Spotlight (film)']
worst = ['American Ultra', 'The Cobbler (2014 film)',
 'Entourage (film)', 'Fantastic Four (2015 film)',
 'Get Hard', 'Hot Pursuit (2015 film)', 'Mortdecai (film)',
 'Serena (2014 film)', 'Vacation (2015 film)']
y = np.asarray([1 for _ in best] + [0 for _ in worst])
X = np.asarray([normalized_movies[movie_to_idx[movie]]
 for movie in best + worst])

56 | Chapter 4: Building a Recommender System Based on Outgoing Wikipedia Links

Constructing and training a simple SVM classifier based on this is easy:

clf = svm.SVC(kernel='linear')
clf.fit(X, y)

We can now run the new classifier over all the movies in our dataset and print the
best five and the worst five:

estimated_movie_ratings = clf.decision_function(normalized_movies)
best = np.argsort(estimated_movie_ratings)
print('best:')
for c in reversed(best[-5:]):
 print(c, movies[c][0], estimated_movie_ratings[c])

print('worst:')
for c in best[:5]:
 print(c, movies[c][0], estimated_movie_ratings[c])

best:
(6870, u'Goodbye to Language', 1.24075226186855)
(6048, u'The Apu Trilogy', 1.2011876298842317)
(481, u'The Devil Wears Prada (film)', 1.1759994747169913)
(307, u'Les Mis\xe9rables (2012 film)', 1.1646775074857494)
(2106, u'A Separation', 1.1483743944891462)
worst:
(7889, u'The Comebacks', -1.5175929012505527)
(8837, u'The Santa Clause (film series)', -1.4651252650867073)
(2518, u'The Hot Chick', -1.464982008376793)
(6285, u'Employee of the Month (2006 film)', -1.4620595013243951)
(7339, u'Club Dread', -1.4593221506016203)

Discussion
As we saw in the previous chapter, we can use support vector machines to efficiently
construct a classifier that distinguishes between two classes. In this case, we have it
distinguish between good movies and bad movies based on the embeddings that we
have previously learned.

Since an SVM finds one or more hyperplanes that separate the “good” examples from
the “bad” examples, we can use this as the personalization function—the movies that
are the furthest from the separating hyperplane and on the right side are the movies
that should be liked best.

4.4 Predicting Simple Movie Properties
Problem
You want to predict simple movie properties, like Rotten Tomatoes ratings.

4.4 Predicting Simple Movie Properties | 57

Solution
Use a linear regression model on the learned vectors of the embedding model to pre‐
dict movie properties.

Let’s try this for Rotten Tomatoes ratings. Luckily they are already present in our data
in movie[-2] as a string of the form N%:

rotten_y = np.asarray([float(movie[-2][:-1]) / 100
 for movie in movies if movie[-2]])
rotten_X = np.asarray([normalized_movies[movie_to_idx[movie[0]]]
 for movie in movies if movie[-2]])

This should get us data for about half our movies. Let’s train on the first 80%:

TRAINING_CUT_OFF = int(len(rotten_X) * 0.8)
regr = LinearRegression()
regr.fit(rotten_X[:TRAINING_CUT_OFF], rotten_y[:TRAINING_CUT_OFF])

Now let’s see how we’re doing on the last 20%:

error = (regr.predict(rotten_X[TRAINING_CUT_OFF:]) -
 rotten_y[TRAINING_CUT_OFF:])
'mean square error %2.2f' % np.mean(error ** 2)

mean square error 0.06

That looks really impressive! But while it is a testament to how effective linear regres‐
sion can be, there is an issue with our data that makes predicting the Rotten Toma‐
toes score easier: we’ve been training on the top 10,000 movies, and while popular
movies aren’t always better, on average they do get better ratings.

We can get an idea of how well we’re doing by comparing our predictions with just
always predicting the average score:

error = (np.mean(rotten_y[:TRAINING_CUT_OFF]) - rotten_y[TRAINING_CUT_OFF:])
'mean square error %2.2f' % np.mean(error ** 2)

'mean square error 0.09'

Our model does perform quite a bit better, but the underlying data makes it easy to
produce a reasonable result.

Discussion
Complex problems often need complex solutions, and deep learning can definitely
give us those. However, starting with the simplest thing that could possibly work is
often a good approach. It gets us started quickly and gives us an idea of whether we’re
looking in the right direction: if the simple model doesn’t produce any useful results
at all it’s not that likely that a complex model will help, whereas if the simple model
does work there’s a good chance that a more complex model can help us achieve bet‐
ter results.

58 | Chapter 4: Building a Recommender System Based on Outgoing Wikipedia Links

Linear regression models are as simple as they come. The model tries to find a set of
factors such that the linear combination of these factors and our vectors approach the
target value as closely as possible. One nice aspect of these models compared to most
machine learning models is that we can actually see what the contribution of each of
the factors is.

4.4 Predicting Simple Movie Properties | 59

CHAPTER 5

Generating Text in the Style of an
Example Text

In this chapter we’ll look at how we can use recurrent neural networks (RNNs) to
generate text in the style of a body of text. This makes for fun demos. People have
used this type of network to generate anything from names of babies to descriptions
of colors. These demos are a good way to get comfortable with recurrent networks.
RNNs have their practical uses too—later in the book we’ll use them to train a chatbot
and build a recommender system for music based on harvested playlists, and RNNs
have been used in production to track objects in video.

The recurrent neural network is a type of neural network that is helpful when work‐
ing with time or sequences. We’ll first look at Project Gutenberg as a source of free
books and download the collected works of William Shakespeare using some simple
code. Next, we’ll use an RNN to produce texts that seem Shakespearean (if you don’t
pay too much attention) by training the network on downloaded text. We’ll then
repeat the trick on Python code, and see how to vary the output. Finally, since Python
code has a predictable structure, we can look at which neurons fire on which bits of
code and visualize the workings of our RNN.

The code for this chapter can be found in the following Python notebook:

05.1 Generating Text in the Style of an Example Text

5.1 Acquiring the Text of Public Domain Books
Problem
You want to download the full text of some public domain books to use to train your
model.

61

Solution
Use the Python API for Project Gutenberg.

Project Gutenberg contains the complete texts of over 50,000 books. There is a handy
Python API available to browse and download these books. We can download any
book if we know the ID:

shakespeare = load_etext(100)
shakespeare = strip_headers(shakespeare)

We can get a book’s ID either by browsing the website and extracting it from the
book’s URL or by querying http://www.gutenberg.org/ by author or title. Before we can
query, though, we need to populate the metainformation cache. This will create a
local database of all books available. It takes a bit of time, but only needs to be done
once:

cache = get_metadata_cache()
cache.populate()

We can now discover all works by Shakespeare:

for text_id in get_etexts('author', 'Shakespeare, William'):
 print(text_id, list(get_metadata('title', text_id))[0])

Discussion
Project Gutenberg is a volunteer project to digitize books. It focuses on making avail‐
able the most important books in English that are out of copyright in the United
States, though it also has books in other languages. It was started in 1971, long before
the invention of the World Wide Web by Michael Hart.

Any work published in the US before 1923 is in the public domain, so most books
found in the Gutenberg collection are older than that. This means that the language
can be somewhat dated, but for natural language processing the collection remains an
unrivalled source of training data. Going through the Python API not only makes
access easy but also respects the restrictions that the site puts up for automatic down‐
loading of texts.

5.2 Generating Shakespeare-Like Texts
Problem
How do you generate text in a specific style?

Solution
Use a character-level RNN.

62 | Chapter 5: Generating Text in the Style of an Example Text

http://www.gutenberg.org/

Let’s start by acquiring Shakespeare’s collected works. We’ll drop the poems, so we’re
left with a more consistent set of just the plays. The poems happen to be collected in
the first entry:

shakespeare = strip_headers(load_etext(100))
plays = shakespeare.split('\nTHE END\n', 1)[-1]

We’re going to feed the text in character by character and we’ll one-hot encode each
character—that is, every character will be encoded as a vector containing all 0s and
one 1. For this, we need to know which characters we’re going to encounter:

chars = list(sorted(set(plays)))
char_to_idx = {ch: idx for idx, ch in enumerate(chars)}

Let’s create our model that will take a sequence of characters and predict a sequence
of characters. We’ll feed the sequence into a number of LSTM layers that do the work.
The TimeDistributed layer lets our model output a sequence again:

def char_rnn_model(num_chars, num_layers, num_nodes=512, dropout=0.1):
 input = Input(shape=(None, num_chars), name='input')
 prev = input
 for i in range(num_layers):
 prev = LSTM(num_nodes, return_sequences=True)(prev)
 dense = TimeDistributed(Dense(num_chars, name='dense',
 activation='softmax'))(prev)
 model = Model(inputs=[input], outputs=[dense])
 optimizer = RMSprop(lr=0.01)
 model.compile(loss='categorical_crossentropy',
 optimizer=optimizer, metrics=['accuracy'])
 return model

We are going to feed in random fragments from the plays to the network, so a genera‐
tor seems appropriate. The generator will yield blocks of pairs of sequences, where
the sequences of the pairs are just one character apart:

def data_generator(all_text, num_chars, batch_size):
 X = np.zeros((batch_size, CHUNK_SIZE, num_chars))
 y = np.zeros((batch_size, CHUNK_SIZE, num_chars))
 while True:
 for row in range(batch_size):
 idx = random.randrange(len(all_text) - CHUNK_SIZE - 1)
 chunk = np.zeros((CHUNK_SIZE + 1, num_chars))
 for i in range(CHUNK_SIZE + 1):
 chunk[i, char_to_idx[all_text[idx + i]]] = 1
 X[row, :, :] = chunk[:CHUNK_SIZE]
 y[row, :, :] = chunk[1:]
 yield X, y

Now we’ll train the model. We’ll set steps_per_epoch such that each character
should have a decent chance to be seen by the network:

model.fit_generator(
 data_generator(plays, len(chars), batch_size=256),

5.2 Generating Shakespeare-Like Texts | 63

 epochs=10,
 steps_per_epoch=2 * len(plays) / (256 * CHUNK_SIZE),
 verbose=2
)

After training we can generate some output. We pick a random fragment from the
plays and let the model guess what the next character is. We then add the next charac‐
ter to the fragment and repeat until we’ve reached the required number of characters:

def generate_output(model, start_index=None, diversity=1.0, amount=400):
 if start_index is None:
 start_index = random.randint(0, len(plays) - CHUNK_SIZE - 1)
 fragment = plays[start_index: start_index + CHUNK_SIZE]
 generated = fragment
 for i in range(amount):
 x = np.zeros((1, CHUNK_SIZE, len(chars)))
 for t, char in enumerate(fragment):
 x[0, t, char_to_idx[char]] = 1.
 preds = model.predict(x, verbose=0)[0]
 preds = np.asarray(preds[len(generated) - 1])
 next_index = np.argmax(preds)
 next_char = chars[next_index]

 generated += next_char
 fragment = fragment[1:] + next_char
 return generated

for line in generate_output(model).split('\n'):
 print(line)

After 10 epochs we should see some text that reminds us of Shakespeare, but we need
around 30 for it to start to look like it could fool a casual reader that is not paying too
close attention:

FOURTH CITIZEN. They were all the summer hearts.
 The King is a virtuous mistress.
CLEOPATRA. I do not know what I have seen him damn'd in no man
 That we have spoken with the season of the world,
 And therefore I will not speak with you.
 I have a son of Greece, and my son
 That we have seen the sea, the seasons of the world
 I will not stay the like offence.

OLIVIA. If it be aught and servants, and something
 have not been a great deal of state)) of the world, I will not stay
 the forest was the fair and not by the way.
SECOND LORD. I will not serve your hour.
FIRST SOLDIER. Here is a princely son, and the world
 in a place where the world is all along.
SECOND LORD. I will not see thee this:
 He hath a heart of men to men may strike and starve.
 I have a son of Greece, whom they say,
 The whiteneth made him like a deadly hand

64 | Chapter 5: Generating Text in the Style of an Example Text

 And make the seasons of the world,
 And then the seasons and a fine hands are parted
 To the present winter's parts of this deed.
 The manner of the world shall not be a man.
 The King hath sent for thee.
 The world is slain.

It’s somewhat suspicious that both Cleopatra and the Second Lord have a son of
Greece, but the present winter and the world being slain are appropriately Game of
Thrones.

Discussion
In this recipe we saw how we can use RNNs to generate text in a certain style. The
results are quite convincing, especially given the fact that the model predicts on a
character-by-character level. Thanks to the LSTM architecture, the network is capa‐
ble of learning relationships that span quite large sequences—not just words, but sen‐
tences, and even the basic structure of the layout of Shakespeare’s plays.

Even though the example shown here isn’t very practical, RNNs can be. Any time we
want a network to learn a sequence of items, an RNN is probably a good choice.

Other toy apps people have built using this technique have generated baby names,
names for paint colors, and even recipes.

More practical RNNs can be used to predict the next character a user is going to type
for a smartphone keyboard app, or predict the next move in a chess game when
trained on a set of openings. This type of network has also been used to predict
sequences like weather patterns or even stock market prices.

Recurrent networks are quite fickle, though. Seemingly small changes to the network
architecture can lead to a situation where they no longer converge because of the so-
called exploding gradient problem. Sometimes during training, after making progress
for a number of epochs, the network seems to collapse and starts forgetting what it
learns. As always, it is best to start with something simple that works and add com‐
plexity step by step, while keeping track of what was changed.

For a slightly more in-depth discussion of RNNs, see Chapter 1.

5.3 Writing Code Using RNNs
Problem
How can you generate Python code using a neural network?

5.3 Writing Code Using RNNs | 65

Solution
Train a recurrent neural network over the Python code that comes with the Python
distribution that runs your scripts.

We can in fact use pretty much the same model as in the previous recipe for this task.
As is often the case with deep learning, the key thing is to get the data. Python ships
with the source code of many modules. Since they are stored in the directory where
the random.py module sits, we can collect them using:

def find_python(rootdir):
 matches = []
 for root, dirnames, filenames in os.walk(rootdir):
 for fn in filenames:
 if fn.endswith('.py'):
 matches.append(os.path.join(root, fn))

 return matches
srcs = find_python(random.__file__.rsplit('/', 1)[0])

We could then read in all these source files and concatenate them into one document
and start generating new snippets, just as we did with the Shakespearean text in the
previous recipe. This works reasonably well, but when generating snippets, it
becomes clear that a good chunk of Python source code is actually English. English
appears both in the form of comments and the contents of strings. We want our
model to learn Python, not English!

Stripping out the comments is easy enough:

COMMENT_RE = re.compile('#.*')
src = COMMENT_RE.sub('', src)

Removing the contents of strings is slightly more involved. Some strings contain use‐
ful patterns, rather than English. As a rough rule, we’re going to replace any bit of text
that has more than six letters and at least one space with "MSG":

def replacer(value):
 if ' ' in value and sum(1 for ch in value if ch.isalpha()) > 6:
 return 'MSG'
 return value

Finding the occurrences of string literals can be done concisely with a regular expres‐
sion. Regular expressions are rather slow though, and we’re running them over a size‐
able amount of code. In this case it’s better to just scan the strings:

def replace_literals(st):
 res = []
 start_text = start_quote = i = 0
 quote = ''
 while i < len(st):
 if quote:

66 | Chapter 5: Generating Text in the Style of an Example Text

 if st[i: i + len(quote)] == quote:
 quote = ''
 start_text = i
 res.append(replacer(st[start_quote: i]))
 elif st[i] in '"\'':
 quote = st[i]
 if i < len(st) - 2 and st[i + 1] == st[i + 2] == quote:
 quote = 3 * quote
 start_quote = i + len(quote)
 res.append(st[start_text: start_quote])
 if st[i] == '\n' and len(quote) == 1:
 start_text = i
 res.append(quote)
 quote = ''
 if st[i] == '\\':
 i += 1
 i += 1
 return ''.join(res) + st[start_text:]

Even cleaned up this way, we end up with megabytes of pure Python code. We can
now train the model as before, but on Python code rather than on plays. After 30
epochs or so, we should have something workable and can generate code.

Discussion
Generating Python code is no different from writing a Shakespearean-style play—at
least for a neural network. We’ve seen that cleaning up the input data is an important
aspect of data processing for neural networks. In this case we made sure to remove
most traces of English from the source code. This way the network can focus on
learning Python and not be distracted by also having to allocate neurons to learning
English.

We could further regularize the input. For example, we could pipe all the source code
first through a “pretty printer” so that it would all have the same layout and our net‐
work could focus on learning that, rather than the diversity found in the current
code. One step further would be to tokenize the Python code using the built-in
tokenizer, and then let the network learn this parsed version and use untokenize to
generate the code.

5.4 Controlling the Temperature of the Output
Problem
You want to control the variability of the generated code.

5.4 Controlling the Temperature of the Output | 67

Solution
Use the predictions as a probability distribution, rather than picking the highest
value.

In the Shakespeare example, we picked the character in the predictions that had the
highest score. This approach results in the output that is the best liked by the model.
The drawback is that we get the same output for every start. Since we picked a ran‐
dom start sequence from the actual Shakespearean texts that didn’t matter much. But
if we want to generate Python functions, it would be nice to always start in the same
way—let’s say with /ndef—and look at various solutions.

The predictions of our network are the result of a softmax activation function and
can therefore be seen as a probability distribution. So, rather than picking the maxi‐
mum value, we can let numpy.random.multinomial give us an answer. multinomial
runs n experiments and takes the probability of how likely the outcomes are. By run‐
ning it with n = 1, we get what we want.

At this point we can introduce the notion of temperature in how we draw the out‐
comes. The idea is that the higher the temperature is, the more random the outcomes
are, while lower temperatures are closer to the pure deterministic outcomes we saw
earlier. We do this by scaling the logs of the predictions accordingly and then apply‐
ing the softmax function again to get back to probabilities. Putting this all together
we get:

def generate_code(model, start_with='\ndef ',
 end_with='\n\n', diversity=1.0):
 generated = start_with
 yield generated
 for i in range(2000):
 x = np.zeros((1, len(generated), len(chars)))
 for t, char in enumerate(generated):
 x[0, t, char_to_idx[char]] = 1.
 preds = model.predict(x, verbose=0)[0]

 preds = np.asarray(preds[len(generated) - 1]).astype('float64')
 preds = np.log(preds) / diversity
 exp_preds = np.exp(preds)
 preds = exp_preds / np.sum(exp_preds)
 probas = np.random.multinomial(1, preds, 1)
 next_index = np.argmax(probas)
 next_char = chars[next_index]
 yield next_char

 generated += next_char
 if generated.endswith(end_with):
 break

68 | Chapter 5: Generating Text in the Style of an Example Text

We’re finally ready to have some fun. At diversity=1.0 the following code is pro‐
duced. Note how the model generated our "MSG" placeholder and, apart from confus‐
ing val and value, almost got us running code:

def _calculate_ratio(val):
 """MSG"""
 if value and value[0] != '0':
 raise errors.HeaderParseError(
 "MSG".format(Storable))
 return value

Discussion
Using the output of the softmax activation function as a probability distribution
allows us to get a variety of results that correspond to what the model “intends.” An
added bonus is that it allows us to introduce the notion of temperature, so we can
control how “random” the output is. In Chapter 13 we’ll look at how variational
autoencoders use a similar technique to control the randomness of what is generated.

The generated Python code can certainly pass for the real thing if we don’t pay atten‐
tion to the details. One way to improve the results further would be to call the com
pile function on the generated code and only keep code that compiles. That way we
can make sure that it is at least syntactically correct. A slight variation of that
approach would be to not start over on a syntax error, but just drop the line where the
error occurs and everything that follows and try again.

5.5 Visualizing Recurrent Network Activations
Problem
How can you gain insight into what a recurrent network is doing?

Solution
Extract the activations from the neurons while they process text. Since we’re going to
visualize the neurons, it makes sense to reduce their number. This will degrade the
performance of the model a bit, but makes things simpler:

flat_model = char_rnn_model(len(py_chars), num_layers=1, num_nodes=512)

This model is a bit simpler and gets us slightly less accurate results, but it is good
enough for visualizations. Keras has a handy method called function that allows us
to specify an input and an output layer and will then run whatever part of the net‐
work is needed to convert from one to the other. The following method provides the
network with a bit of text (a sequence of characters) and gets the activations for a spe‐
cific layer back:

5.5 Visualizing Recurrent Network Activations | 69

def activations(model, code):
 x = np.zeros((1, len(code), len(py_char_to_idx)))
 for t, char in enumerate(code):
 x[0, t, py_char_to_idx[char]] = 1.
 output = model.get_layer('lstm_3').output
 f = K.function([model.input], [output])
 return f([x])[0][0]

Now the question is which neurons to look at. Even our simplified model has 512
neurons. Activations in an LSTM are between –1 and 1, so a simple way to find inter‐
esting neurons is to just pick the highest value corresponding to each character.
np.argmax(act, axis=1) will get us that. We can visualize those neurons using:

img = np.full((len(neurons) + 1, len(code), 3), 128)
scores = (act[:, neurons].T + 1) / 2
img[1:, :, 0] = 255 * (1 - scores)
img[1:, :, 1] = 255 * scores

This will produce a small bitmap. After we enlarge the bitmap and plot the code on
top, we get:

This looks interesting. The top neuron seems to keep track of where new statements
start. The one with the green bars keeps track of spaces, but only in as far as they are
used for indentation. The last-but-one neuron seems to fire when there is an = sign,
but not when there is a ==, suggesting the network learned the difference between
assignment and equality.

Discussion
Deep learning models can be very effective, but their results are notoriously hard to
explain. We more or less understand the mechanics of the training and inference, but
it is often difficult to explain a concrete result, other than pointing to the actual calcu‐
lations. Visualizing activations is one way of making what the network learned a little
clearer.

70 | Chapter 5: Generating Text in the Style of an Example Text

Looking at the neurons with the highest activation for each character quickly gets us a
set of neurons that might be of interest. Alternatively, we could explicitly try to look
for neurons that fire in specific circumstances, for example inside brackets.

Once we have a specific neuron that looks interesting, we can use the same coloring
technique to highlight larger chunks of code.

5.5 Visualizing Recurrent Network Activations | 71

CHAPTER 6

Question Matching

We’ve now seen a few examples of how we can construct and use word embeddings to
compare terms with one another. It’s natural to ask how we can extend this idea to
larger blocks of text. Can we create semantic embeddings of entire sentences or para‐
graphs? In this chapter, we’ll try to do just that: we’re going to use data from Stack
Exchange to build embeddings for entire questions; we can then use those embed‐
dings to find similar documents or questions.

We’ll start out by downloading and parsing our training data from the Internet
Archive. Then we’ll briefly explore how Pandas can be helpful for analyzing data. We
let Keras do the heavy lifting when it comes to featurizing our data and building a
model for the task at hand. We then look into how to feed this model from a Pandas
DataFrame and how we can run it to draw conclusions.

The code for this chapter can be found in the following notebook:

06.1 Question matching

6.1 Acquiring Data from Stack Exchange
Problem
You need to access a large set of questions to kick-start your training.

Solution
Use the Internet Archive to retrieve a dump of questions.

A Stack Exchange data dump is freely available on the Internet Archive, which hosts a
number of interesting datasets (as well as striving to provide an archive of the entire

73

https://archive.org/details/stackexchange

web). The data is laid out with one ZIP file for each area on Stack Exchange (e.g.,
travel, sci-fi, etc.). Let’s download the file for the travel section:

xml_7z = utils.get_file(
 fname='travel.stackexchange.com.7z',
 origin=('https://ia800107.us.archive.org/27/'
 'items/stackexchange/travel.stackexchange.com.7z'),
)

While the input is technically an XML file, the structure is simple enough that we can
get away with just reading individual lines and splitting out the fields. This is a bit
brittle, of course. We will limit ourselves to processing 1 million records from the
dataset; this keeps our memory usage from blowing up and should be enough data
for us to work with. We’ll save the processed data as a JSON file so we won’t have to
do the processing again the next time around:

def extract_stackexchange(filename, limit=1000000):
 json_file = filename + 'limit=%s.json' % limit

 rows = []
 for i, line in enumerate(os.popen('7z x -so "%s" Posts.xml'
 % filename)):
 line = str(line)
 if not line.startswith(' <row'):
 continue

 if i % 1000 == 0:
 print('\r%05d/%05d' % (i, limit), end='', flush=True)

 parts = line[6:-5].split('"')
 record = {}
 for i in range(0, len(parts), 2):
 k = parts[i].replace('=', '').strip()
 v = parts[i+1].strip()
 record[k] = v
 rows.append(record)

 if len(rows) > limit:
 break

 with open(json_file, 'w') as fout:
 json.dump(rows, fout)

 return rows

rows = download_stackexchange()

74 | Chapter 6: Question Matching

Discussion
The Stack Exchange datasets is a great source for question/answer pairs that comes
with a nice reuse license. As long as you give attribution you can use it in pretty much
any way you want. Converting the zipped XML into the more easily consumable
JSON format is a good preprocessing step.

6.2 Exploring Data Using Pandas
Problem
How do you quickly explore a large dataset so you can make sure it contains what you
expect?

Solution
Use Python’s Pandas.

Pandas is a powerful framework for data processing in Python. In some ways it is
comparable to a spreadsheet; the data is stored in rows and columns and we can
quickly filter, convert, and aggregate on the records. Let’s start by converting our rows
of Python dictionaries into a DataFrame. Pandas tries to “guess” the types of some col‐
umns. We’ll coerce the columns we care about into the right format:

df = pd.DataFrame.from_records(rows)
df = df.set_index('Id', drop=False)
df['Title'] = df['Title'].fillna('').astype('str')
df['Tags'] = df['Tags'].fillna('').astype('str')
df['Body'] = df['Body'].fillna('').astype('str')
df['Id'] = df['Id'].astype('int')
df['PostTypeId'] = df['PostTypeId'].astype('int')

With df.head we can now see what’s going on in our database.

We can also use Pandas to take a quick look at popular questions in our data:

list(df[df['ViewCount'] > 2500000]['Title'])

['How to horizontally center a <div> in another <div>?',
 'What is the best comment in source code you have ever encountered?',
 'How do I generate random integers within a specific range in Java?',
 'How to redirect to another webpage in JavaScript/jQuery?',
 'How can I get query string values in JavaScript?',
 'How to check whether a checkbox is checked in jQuery?',
 'How do I undo the last commit(s) in Git?',
 'Iterate through a HashMap',
 'Get selected value in dropdown list using JavaScript?',
 'How do I declare and initialize an array in Java?']

6.2 Exploring Data Using Pandas | 75

As you might expect, the most popular questions are general questions about fre‐
quently used languages.

Discussion
Pandas is a great tool for many types of data analysis, whether you just want to have a
casual look at the data or you want to do in-depth analysis. It can be tempting to try
to leverage Pandas for many tasks, but unfortunately the Pandas interface is not at all
regular and for complex operations the performance can be significantly worse than
using a real database. Lookups in Pandas are significantly more expensive than using
a Python dictionary, so be careful!

6.3 Using Keras to Featurize Text
Problem
How do you quickly create feature vectors from text?

Solution
Use the Tokenizer class from Keras.

Before we can feed text into a model, we need to convert it into feature vectors. A
common way to do this is to assign an integer to each of the top N words in a text and
then replace each word by its integer. Keras makes this really straightforward:

from keras.preprocessing.text import Tokenizer
VOCAB_SIZE = 50000

tokenizer = Tokenizer(num_words=VOCAB_SIZE)
tokenizer.fit_on_texts(df['Body'] + ' ' + df['Title'])

Now let’s tokenize the titles and bodies of our whole dataset:

df['title_tokens'] = tokenizer.texts_to_sequences(df['Title'])
df['body_tokens'] = tokenizer.texts_to_sequences(df['Body'])

Discussion
Converting text to a series of numbers by using a tokenizer is one of the classic ways
of making text consumable by a neural network. In the previous chapter we con‐
verted text on a per-character basis. Character-based models take as input individual
characters (removing the need for a tokenizer). The trade-off is in how long it takes
to train the model: because you’re forcing the model to learn how to tokenize and
stem words, you need more training data and more time.

76 | Chapter 6: Question Matching

One of the drawbacks of processing texts on a per-word basis is the fact that there is
no practical upper limit to the number of different words that can appear in the texts,
especially if we have to handle typos and errors. In this recipe we only pay attention
to words that appear in the top 50,000 by count, which is one way around this prob‐
lem.

6.4 Building a Question/Answer Model
Problem
How do you calculate embeddings for questions?

Solution
Train a model to predict whether a question and an answer from the Stack Exchange
dataset match.

Whenever we construct a model, the first question we should ask is: “What is our
objective?” That is, what is the model going to try to classify?

Ideally we’d have a list of “similar questions to this one,” which we could use to train
our model. Unfortunately, it would be very expensive to acquire such a dataset!
Instead, we’ll rely on a surrogate objective: let’s see if we can train our model to, given
a question, distinguish between the matching answer and an answer from a random
question. This will force the model to learn a good representation of titles and bodies.

We start off our model by defining our inputs. In this case we have two inputs, the
title (question) and body (answer):

title = layers.Input(shape=(None,), dtype='int32', name='title')
body = layers.Input(shape=(None,), dtype='int32', name='body')

Both are of varying length, so we have to pad them. The data for each field will be a
list of integers, one for each word in the title or the body.

Now we want to define a shared set of layers that both inputs will be passed through.
We’re first going to construct an embedding for the inputs, then mask out the invalid
values, and add all of the words’ values together:

 embedding = layers.Embedding(
 mask_zero=True,
 input_dim=vocab_size,
 output_dim=embedding_size
)

mask = layers.Masking(mask_value=0)
def _combine_sum(v):
 return K.sum(v, axis=2)

6.4 Building a Question/Answer Model | 77

sum_layer = layers.Lambda(_combine_sum)

Here, we’ve specified a vocab_size (how many words are in our vocabulary) and an
embedding_size (how wide our embedding of each word should be; the GoogleNews
vectors are 300 dimensions, for example).

Now let’s apply these layers to our word inputs:

title_sum = sum_layer(mask(embedding(title)))
body_sum = sum_layer(mask(embedding(body)))

Now that we have a single vector for our title and body, we can compare them to each
other with a cosine distance, just like we did in Recipe 4.2. In Keras, that is expressed
via the dot layer:

sim = layers.dot([title_sum, word_sum], normalize=True, axes=1)

Finally, we can define our model. It takes the title and the body in and outputs the
similarity between the two:

sim_model = models.Model(inputs=[title,body], outputs=[sim])
sim_model.compile(loss='mse', optimizer='rmsprop')

Discussion
The model we’ve built here learns to match questions and answers but really the only
freedom we give it is to change the embeddings of the words such that the sums of
the embeddings of the title and the body match. This should get us embeddings for
questions such that questions that are similar will have similar embeddings, because
similar questions will have similar answers.

Our training model is compiled with two parameters telling Keras how to improve
the model:

The loss function
This tells the system how “wrong” a given answer is. For example, if we told the
network that title_a and body_a should output 1.0, but the network predicts
0.8, how bad of an error is that? This becomes a more complex problem when we
have multiple outputs, but we’ll cover that later. For this model, we’re going to use
mean squared error. For the previous example, this means we would penalize the
model by (1.0–0.8) ** 2, or 0.04. This loss will be propagated back through the
model and improve the embeddings each time the model sees an example.

The optimizer
There are many ways that loss can be used to improve our model. These are
called optimization strategies, or optimizers. Fortunately, Keras comes with a
number of reliable optimizers built in, so we won’t have to worry much about

78 | Chapter 6: Question Matching

this: we can just pick a suitable one. In this case, we’re using the rmsprop opti‐
mizer, which tends to perform very well across a wide range of problems.

6.5 Training a Model with Pandas
Problem
How do you train a model on data contained in Pandas?

Solution
Build a data generator that leverages the filter and sample features of Pandas.

As in the previous recipe, we are going to train our model to distinguish between a
question title and the correct answer (body) versus the answer to another random
question. We can write that out as a generator that iterates over our dataset. It will
output a 1 for the correct question title and body and a 0 for a random title and body:

def data_generator(batch_size, negative_samples=1):
 questions = df[df['PostTypeId'] == 1]
 all_q_ids = list(questions.index)

 batch_x_a = []
 batch_x_b = []
 batch_y = []

 def _add(x_a, x_b, y):
 batch_x_a.append(x_a[:MAX_DOC_LEN])
 batch_x_b.append(x_b[:MAX_DOC_LEN])
 batch_y.append(y)

 while True:
 questions = questions.sample(frac=1.0)

 for i, q in questions.iterrows():
 _add(q['title_tokens'], q['body_tokens'], 1)

 negative_q = random.sample(all_q_ids, negative_samples)
 for nq_id in negative_q:
 _add(q['title_tokens'],
 df.at[nq_id, 'body_tokens'], 0)

 if len(batch_y) >= batch_size:
 yield ({
 'title': pad_sequences(batch_x_a, maxlen=None),
 'body': pad_sequences(batch_x_b, maxlen=None),
 }, np.asarray(batch_y))

 batch_x_a = []

6.5 Training a Model with Pandas | 79

 batch_x_b = []
 batch_y = []

The only complication here is the batching of the data. This is not strictly necessary,
but extremely important for performance. All deep learning models are optimized to
work on chunks of data at a time. The best batch size to use depends on the problem
you’re working on. Using larger batches means your model sees more data for each
update and therefore can more accurately update its weights, but on the flip side it
can’t update as often. Bigger batch sizes also take more memory. It’s best to start small
and keep doubling the batch size until the results no longer improve.

Now let’s train the model:

sim_model.fit_generator(
 data_generator(batch_size=128),
 epochs=10,
 steps_per_epoch=1000
)

We’ll train it for 10,000 steps, divided into 10 epochs of 1,000 steps each. Each step
will process 128 documents, so our network will end up seeing 1.28M training exam‐
ples. If you have a GPU, you’ll be surprised how quickly this runs!

6.6 Checking Similarities
Problem
You’d like to use Keras to predict values by using the weights of another network.

Solution
Construct a second model that uses different input and output layers from the origi‐
nal network, but shares some of the other layers.

Our sim_model has been trained and as part of that learned how to go from a title to a
title_sum, which is really what we are after. The model that just does that is:

embedding_model = models.Model(inputs=[title], outputs=[title_sum])

We can now use the “embedding” model to compute a representation for each ques‐
tion in our dataset. Let’s wrap this up in a class for easy reuse:

questions = df[df['PostTypeId'] == 1]['Title'].reset_index(drop=True)
question_tokens = pad_sequences(tokenizer.texts_to_sequences(questions))

class EmbeddingWrapper(object):
 def __init__(self, model):
 self._questions = questions
 self._idx_to_question = {i:s for (i, s) in enumerate(questions)}
 self._weights = model.predict({'title': question_tokens},

80 | Chapter 6: Question Matching

 verbose=1, batch_size=1024)
 self._model = model
 self._norm = np.sqrt(np.sum(self._weights * self._weights
 + 1e-5, axis=1))

 def nearest(self, question, n=10):
 tokens = tokenizer.texts_to_sequences([sentence])
 q_embedding = self._model.predict(np.asarray(tokens))[0]
 q_norm= np.sqrt(np.dot(q_embedding, q_embedding))
 dist = np.dot(self._weights, q_embedding) / (q_norm * self._norm)

 top_idx = np.argsort(dist)[-n:]
 return pd.DataFrame.from_records([
 {'question': self._r[i], ‘similarity': float(dist[i])}
 for i in top_idx
])

And now we can use it:

lookup = EmbeddingWrapper(model=sum_embedding_trained)
lookup.nearest('Python Postgres object relational model')

This produces the following results:

Similarity Question
0.892392 working with django and sqlalchemy but backend…

0.893417 Python ORM that auto-generates/updates tables …

0.893883 Dynamic Table Creation and ORM mapping in SqlA…

0.896096 SQLAlchemy with count, group_by and order_by u…

0.897706 SQLAlchemy: Scan huge tables using ORM?

0.902693 Efficiently updating database using SQLAlchemy…

0.911446 What are some good Python ORM solutions?

0.922449 python orm

0.924316 Python libraries to construct classes from a r…

0.930865 python ORM allowing for table creation and bul…

In a very short training time, our network managed to figure out that “SQL,” “query,”
and “INSERT” are all related to Postgres!

Discussion
In this recipe we saw how we can use part of a network to predict the values we’re
after, even if the overall network was trained to predict something else. The func‐
tional API of Keras provides a nice separation between the layers, how they are con‐
nected, and which combination of input and output layers forms a model.

6.6 Checking Similarities | 81

As we’ll see later in this book, this gives us a lot of flexibility. We can take a pre-
trained network and use one of the middle layers as an output layer, or we can take
one of those middle layers and add some new layers (see Chapter 9). We can even run
the network backwards (see Chapter 12).

82 | Chapter 6: Question Matching

CHAPTER 7

Suggesting Emojis

In this chapter we’ll build a model to suggest emojis given a small piece of text. We’ll
start by developing a simple sentiment classifier based on a public set of tweets
labeled with various sentiments, like happiness, love, surprise, etc. We’ll first try a
Bayesian classifier to get an idea of the baseline performance and take a look at what
this classifier can learn. We’ll then switch to a convolutional network and look at vari‐
ous ways to tune this classifier.

Next we’ll look at how we can harvest tweets using the Twitter API ourselves, and
then we’ll apply the convolutional model from Recipe 7.3 before moving on to a
word-level model. We’ll then construct and apply a recurrent word-level network,
and compare the three different models.

Finally, we’ll combine all three models into an ensemble model that outperforms any
of the three.

The final model does a very decent job and just needs to be rolled into a mobile app!

The code for this chapter can be found in these notebooks:

07.1 Text Classification
07.2 Emoji Suggestions
07.3 Tweet Embeddings

7.1 Building a Simple Sentiment Classifier
Problem
How can you determine the sentiment expressed in a piece of text?

83

Solution
Find a dataset consisting of sentences where the sentiment is labeled and run a simple
classifier over them.

Before trying something complicated, it is a good idea to first try the simplest thing
we can think of on a dataset that is readily available. In this case we’ll try to build a
simple sentiment classifier based on a published dataset. In the following recipes we’ll
try to do something more involved.

A quick Google search leads us to a decent dataset from CrowdFlower containing
tweets and sentiment labels. Since sentiment labels are similar to emojis on some
level, this is a good start. Let’s download the file and take a peek:

import pandas as pd
from keras.utils.data_utils import get_file
import nb_utils

emotion_csv = get_file('text_emotion.csv',
 'https://www.crowdflower.com/wp-content/'
 'uploads/2016/07/text_emotion.csv')
emotion_df = pd.read_csv(emotion_csv)

emotion_df.head()

This results in:

tweet_id sentiment author content
0 1956967341 empty xoshayzers @tiffanylue i know i was listenin to bad habi…

1 1956967666 sadness wannamama Layin n bed with a headache ughhhh…waitin o…

2 1956967696 sadness coolfunky Funeral ceremony…gloomy friday…

3 1956967789 enthusiasm czareaquino wants to hang out with friends SOON!

4 1956968416 neutral xkilljoyx @dannycastillo We want to trade with someone w…

We can also check how frequently the various emotions occur:

emotion_df['sentiment'].value_counts()

neutral 8638
worry 8459
happiness 5209
sadness 5165
love 3842
surprise 2187

Some of the simplest models that often give surprisingly good results are from the
naive Bayes family. We’ll start by encoding the data using the methods that sklearn
provides. TfidfVectorizer assigns weights to words according to their inverse docu‐

84 | Chapter 7: Suggesting Emojis

ment frequency; words that occur often get a lower weight since they tend to be less
informative. LabelEncoder assigns unique integers to the different labels it sees:

tfidf_vec = TfidfVectorizer(max_features=VOCAB_SIZE)
label_encoder = LabelEncoder()
linear_x = tfidf_vec.fit_transform(emotion_df['content'])
linear_y = label_encoder.fit_transform(emotion_df['sentiment'])

With this data in hand, we can now construct the Bayesian model and evaluate it:

bayes = MultinomialNB()
bayes.fit(linear_x, linear_y)
pred = bayes.predict(linear_x)
precision_score(pred, linear_y, average='micro')

0.28022727272727271

We get 28% right. If we always predicted the most likely category we would get a bit
over 20%, so we’re off to a good start. There are some other simple classifiers to try
that might do a little better, but tend to be slower:

classifiers = {'sgd': SGDClassifier(loss='hinge'),
 'svm': SVC(),
 'random_forrest': RandomForestClassifier()}

for lbl, clf in classifiers.items():
 clf.fit(X_train, y_train)
 predictions = clf.predict(X_test)
 print(lbl, precision_score(predictions, y_test, average='micro'))

random_forrest 0.283939393939
svm 0.218636363636
sgd 0.325454545455

Discussion
Trying out “the simplest thing that could possibly work” helps us get started quickly
and gives us an idea of whether the data has enough signal in it to do the job that we
want to do.

Bayesian classifiers proved very effective in the early days of email spam fighting.
However, they assume the contributions of each factor are independent from each
other—so in this case, each word in a tweet has a certain effect on the predicted label,
independent from the other words—which is clearly not always the case. A simple
example is that inserting the word not into a sentence can negate the sentiment
expressed. Still the model is easy to construct, and gets us results very quickly, and the
results are understandable. As a rule, if a Bayesian model does not produce any good
results on your data, using something more complex will probably not help much.

7.1 Building a Simple Sentiment Classifier | 85

Bayesian models often seem to work even better than we’d naively
expect. There has been some interesting research on why this is.
Before machine learning they helped break the Enigma code, and
they helped power the first email spam detectors.

7.2 Inspecting a Simple Classifier
Problem
How can you see what a simple classifier has learned?

Solution
Look at the contributing factors that make the classifier output a result.

One of the advantages of using a Bayesian approach is that we get a model that we
can understand. As we discussed in the previous recipe, Bayesian models assume that
the contribution of each word is independent of the other words, so to get an idea of
what our model has learned, we can just ask the model’s opinion on the individual
words.

Now remember, the model expects a series of documents, each encoded as a vector
whose length is equal to the size of the vocabulary, with each element encoding the
relative frequency of the corresponding word in this document versus all the docu‐
ments. So, a collection of documents that each contained just one word would be a
square matrix with ones on the diagonal; the nth document would have zeros for all
words in the vocabulary, except for word n. Now we can for each word predict the
likelihoods for the labels:

d = eye(len(tfidf_vec.vocabulary_))
word_pred = bayes.predict_proba(d)

Then we can go through all the predictions and find the word scores for each class.
We store this in a Counter object so we can easily access the top contributing words:

by_cls = defaultdict(Counter)
for word_idx, pred in enumerate(word_pred):
 for class_idx, score in enumerate(pred):
 cls = label_encoder.classes_[class_idx]
 by_cls[cls][inverse_vocab[word_idx]] = score

Let’s print the results:

for k in by_cls:
 words = [x[0] for x in by_cls[k].most_common(5)]
 print(k, ':', ' '.join(words))

happiness : excited woohoo excellent yay wars
hate : hate hates suck fucking zomberellamcfox

86 | Chapter 7: Suggesting Emojis

boredom : squeaking ouuut cleanin sooooooo candyland3
enthusiasm : lena_distractia foolproofdiva attending krisswouldhowse tatt
fun : xbox bamboozle sanctuary oldies toodaayy
love : love mothers mommies moms loved
surprise : surprise wow surprised wtf surprisingly
empty : makinitrite conversating less_than_3 shakeyourjunk kimbermuffin
anger : confuzzled fridaaaayyyyy aaaaaaaaaaa transtelecom filthy
worry : worried poor throat hurts sick
relief : finally relax mastered relief inspiration
sadness : sad sadly cry cried miss
neutral : www painting souljaboytellem link frenchieb

Discussion
Inspecting what a simple model learns before diving into something more complex is
a useful exercise. As powerful as deep learning models are, the fact is that it is hard to
really tell what they are doing. We can get a general idea of how they work, but truly
understanding the millions of weights that result from training is almost impossible.

The results from our Bayesian model here are in line with what we would expect. The
word “sad” is an indication for the class “sadness” and “wow” is an indication for sur‐
prise. Touchingly, the word “mothers” is a strong indication for love.

We do see a bunch of odd words, like “kimbermuffin” and “makinitrite.” On inspec‐
tion it turns out that these are Twitter handles. “foolproofdiva” is just a very enthusi‐
astic person. Depending on the goal, we might consider filtering these out.

7.3 Using a Convolutional Network for Sentiment Analysis
Problem
You’d like to try using a deep network to determine the sentiment expressed in a piece
of text using a deep network.

Solution
Use a convolutional network.

CNNs are more commonly associated with image recognition (see Chapter 9), but
they do also work well with certain text classification tasks. The idea is to slide a win‐
dow over the text and that way convert a sequence of items into a (shorter) sequence
of features. The items in this case would be characters. The same weights are used for
each step, so we don’t have to learn the same thing multiple times—the word “cat”
means “cat” wherever it occurs in a tweet:

char_input = Input(shape=(max_sequence_len, num_chars), name='input')

conv_1x = Conv1D(128, 6, activation='relu', padding='valid')(char_input)

7.3 Using a Convolutional Network for Sentiment Analysis | 87

max_pool_1x = MaxPooling1D(6)(conv_1x)
conv_2x = Conv1D(256, 6, activation='relu', padding='valid')(max_pool_1x)
max_pool_2x = MaxPooling1D(6)(conv_2x)

flatten = Flatten()(max_pool_2x)
dense = Dense(128, activation='relu')(flatten)
preds = Dense(num_labels, activation='softmax')(dense)

model = Model(char_input, preds)
model.compile(loss='sparse_categorical_crossentropy',
 optimizer='rmsprop',
 metrics=['acc'])

For the model to run, we first have to vectorize our data. We’ll use the same one-hot
encoding we saw in the previous recipe, encoding each character as a vector filled
with all zeros, except for the nth entry, where n corresponds to the character we’re
encoding:

chars = list(sorted(set(chain(*emotion_df['content']))))
char_to_idx = {ch: idx for idx, ch in enumerate(chars)}
max_sequence_len = max(len(x) for x in emotion_df['content'])

char_vectors = []
for txt in emotion_df['content']:
 vec = np.zeros((max_sequence_len, len(char_to_idx)))
 vec[np.arange(len(txt)), [char_to_idx[ch] for ch in txt]] = 1
 char_vectors.append(vec)
char_vectors = np.asarray(char_vectors)
char_vectors = pad_sequences(char_vectors)
labels = label_encoder.transform(emotion_df['sentiment'])

Let’s split our data into a training and a test set:

def split(lst):
 training_count = int(0.9 * len(char_vectors))
 return lst[:training_count], lst[training_count:]

training_char_vectors, test_char_vectors = split(char_vectors)
training_labels, test_labels = split(labels)

We can now train the model and evaluate it:

char_cnn_model.fit(training_char_vectors, training_labels,
 epochs=20, batch_size=1024)
char_cnn_model.evaluate(test_char_vectors, test_labels)

After 20 epochs, the training accuracy reaches 0.39, but the test accuracy is only 0.31.
The difference is explained by overfitting; the model doesn’t just learn general aspects
of the data that are also applicable to the test set, but starts to memorize part of the
training data. This is similar to a student learning which answers match which ques‐
tions, without understanding why.

88 | Chapter 7: Suggesting Emojis

Discussion
Convolutional networks work well in situations where we want our network to learn
things independently of where they occur. For image recognition, we don’t want the
network to learn separately for each pixel; we want it to learn to recognize features
independently of where they occur in the image.

Similarly, for text, we want the model to learn that if the word “love” appears any‐
where in the tweet, “love” would be a good label. We don’t want the model to learn
this for each position separately. A CNN accomplishes this by running a sliding win‐
dow over the text. In this case we use a window of size 6, so we take 6 characters at a
time; for a tweet containing 125 characters, we would apply this 120 times.

The crucial thing is that each of those 120 neurons uses the same weights, so they all
learn the same thing. After the convolution, we apply a max_pooling layer. This layer
will take groups of six neurons and output the maximum value of their activations.
We can think of this as forwarding the strongest theory that any of the neurons have
to the next layer. It also reduces the size by a factor of six.

In our model we have two convolutional/max-pooling layers, which changes the size
from an input of 167×100 to 3×256. We can think of these as steps that increase the
level of abstraction. At the input level, we only know for each of the 167 positions
which of any of the 100 different characters occurs. After the last convolution, we
have 3 vectors of 256 each, which encode what is happening at the beginning, the
middle, and the end of the tweet.

7.4 Collecting Twitter Data
Problem
How can you collect a large amount of Twitter data for training purposes automati‐
cally?

Solution
Use the Twitter API.

The first thing to do is to head over to https://apps.twitter.com to register a new app.
Click the Create New App button and fill in the form. We’re not going to do anything
on behalf of users, so you can leave the Callback URL field empty.

After completion, you should have two keys and two secrets that allow access to the
API. Let’s store them in their corresponding variables:

7.4 Collecting Twitter Data | 89

https://apps.twitter.com

CONSUMER_KEY = '<your value>'
CONSUMER_SECRET = '<your value>'
ACCESS_TOKEN = '<your value>'
ACCESS_SECRET = '<your value>'

We can now construct an authentication object:

auth=twitter.OAuth(
 consumer_key=CONSUMER_KEY,
 consumer_secret=CONSUMER_SECRET,
 token=ACCESS_TOKEN,
 token_secret=ACCESS_SECRET,
)

The Twitter API has two parts. The REST API makes it possible to call various func‐
tions to search for tweets, get the status for a user, and even post to Twitter. In this
recipe we’ll use the streaming API, though.

If you pay Twitter, you’ll get a stream that contains all tweets as they are happening. If
you don’t pay, you get a sample of all tweets. That’s good enough for our purpose:

status_stream = twitter.TwitterStream(auth=auth).statuses

The stream object has an iterator, sample, which will yield tweets. Let’s take a look at
some of these using itertools.islice:

[x['text'] for x in itertools.islice(stream.sample(), 0, 5) if x.get('text')]

In this case we only want tweets that are in English and contain at least one emoji:

def english_has_emoji(tweet):
 if tweet.get('lang') != 'en':
 return False
 return any(ch for ch in tweet.get('text', '') if ch in emoji.UNICODE_EMOJI)

We can now get a hundred tweets containing at least one emoji with:

tweets = list(itertools.islice(
 filter(english_has_emoji, status_stream.sample()), 0, 100))

We get two to three tweets a second, which is not bad, but it will take a while until we
have a sizeable training set. We only care about the tweets that have only one type of
emoji, and we only want to keep that emoji and the text:

stripped = []
for tweet in tweets:
 text = tweet['text']
 emojis = {ch for ch in text if ch in emoji.UNICODE_EMOJI}
 if len(emojis) == 1:
 emoiji = emojis.pop()
 text = ''.join(ch for ch in text if ch != emoiji)
 stripped.append((text, emoiji))

90 | Chapter 7: Suggesting Emojis

Discussion
Twitter can be a very useful source of training data. Each tweet has a wealth of meta‐
data associated with it, from the account that posted the tweet to the images and hash
tags. In this chapter we only use the language metainformation, but it is a rich area
for exploring.

7.5 A Simple Emoji Predictor
Problem
How can you predict the emoji that best matches a piece of text?

Solution
Repurpose the sentiment classifier from Recipe 7.3.

If you collected a sizeable amount of tweets in the previous step, you can use those. If
not, you can find a good sample in data/emojis.txt. Let’s read those into a Pandas Data
Frame. We’re going to filter out any emoji that occurs less than 1,000 times:

all_tweets = pd.read_csv('data/emojis.txt',
 sep='\t', header=None, names=['text', 'emoji'])
tweets = all_tweets.groupby('emoji').filter(lambda c:len(c) > 1000)
tweets['emoji'].value_counts()

This dataset is too large to keep in memory in vectorized form, so we’ll train using a
generator. Pandas comes conveniently with a sample method, which allows us to have
the following data_generator:

def data_generator(tweets, batch_size):
 while True:
 batch = tweets.sample(batch_size)
 X = np.zeros((batch_size, max_sequence_len, len(chars)))
 y = np.zeros((batch_size,))
 for row_idx, (_, row) in enumerate(batch.iterrows()):
 y[row_idx] = emoji_to_idx[row['emoji']]
 for ch_idx, ch in enumerate(row['text']):
 X[row_idx, ch_idx, char_to_idx[ch]] = 1
 yield X, y

We can now train the model from Recipe 7.3 without modifications using:

train_tweets, test_tweets = train_test_split(tweets, test_size=0.1)
BATCH_SIZE = 512
char_cnn_model.fit_generator(
 data_generator(train_tweets, batch_size=BATCH_SIZE),
 epochs=20,
 steps_per_epoch=len(train_tweets) / BATCH_SIZE,

7.5 A Simple Emoji Predictor | 91

 verbose=2
)

The model trains to about 40% precision. This sounds pretty good, even if we take
into account that the top emojis occur a lot more often than the bottom ones. If we
run the model over the evaluation set the precision score drops from 40% to a little
over 35%:

char_cnn_model.evaluate_generator(
 data_generator(test_tweets, batch_size=BATCH_SIZE),
 steps=len(test_tweets) / BATCH_SIZE
)

[3.0898117224375405, 0.35545459692028986]

Discussion
With no changes to the model itself, we are able to suggest emojis for a tweet instead
of running sentiment classification. This is not too surprising; in a way emojis are
sentiment labels applied by the author. That the performance is about the same for
both tasks is maybe less expected, since we have so many more labels and since we
would expect the labels to be more noisy.

7.6 Dropout and Multiple Windows
Problem
How can you increase the performance of your network?

Solution
Increase the number of trainable variables while introducing dropout, a technique
that makes it harder for a bigger network to overfit.

The easy way to increase the expressive power of a neural network is to make it big‐
ger, either by making the individual layers bigger or by adding more layers to the net‐
work. A network with more variables has a higher capacity for learning and can gen‐
eralize better. This doesn’t come for free, though; at some point the network starts to
overfit. (Recipe 1.3 describes this problem in more detail.)

Let’s start by expanding our current network. In the previous recipe we used a step
size of 6 for our convolutions. Six characters seems like a reasonable amount to cap‐
ture local information, but it is also slightly arbitrary. Why not four or five? We can in
fact do all three and then join the results:

layers = []
for window in (4, 5, 6):
 conv_1x = Conv1D(128, window, activation='relu',

92 | Chapter 7: Suggesting Emojis

 padding='valid')(char_input)
 max_pool_1x = MaxPooling1D(4)(conv_1x)
 conv_2x = Conv1D(256, window, activation='relu',
 padding='valid')(max_pool_1x)
 max_pool_2x = MaxPooling1D(4)(conv_2x)
 layers.append(max_pool_2x)

merged = Concatenate(axis=1)(layers)

Precision goes up to 47% during training using this network with its extra layers. But
unfortunately the precision on the test set reaches only 37%. That is still slightly bet‐
ter than what we had before, but the overfitting gap has increased by quite a bit.

There are a number of techniques to stop overfitting, and they all have in common
that they restrict what the model can learn. One of the most popular is adding a Drop
out layer. During training, Dropout randomly sets the weights of a fraction of all neu‐
rons to zero. This forces the network to learn more robustly since it can’t rely on a
specific neuron to be present. During prediction, all neurons work, which averages
the results and makes outliers less likely. This slows the overfitting down.

In Keras we add Dropout just like any other layer. Our model then becomes:

 for window in (4, 5, 6):
 conv_1x = Conv1D(128, window,
 activation='relu', padding='valid')(char_input)
 max_pool_1x = MaxPooling1D(4)(conv_1x)
 dropout_1x = Dropout(drop_out)(max_pool_1x)
 conv_2x = Conv1D(256, window,
 activation='relu', padding='valid')(dropout_1x)
 max_pool_2x = MaxPooling1D(4)(conv_2x)
 dropout_2x = Dropout(drop_out)(max_pool_2x)
 layers.append(dropout_2x)

 merged = Concatenate(axis=1)(layers)

 dropout = Dropout(drop_out)(merged)

Picking the dropout value is a bit of an art. A higher value means a more robust
model, but one that also trains more slowly. Running with 0.2 brings the training pre‐
cision to 0.43 and the test precision to 0.39, suggesting that we could still go higher.

Discussion
This recipe gives an idea of some of the techniques we can use to improve the perfor‐
mance of our networks. By adding more layers, trying different windows, and intro‐
ducing Dropout layers at various places, we have a lot of knobs to turn to optimize
our network. The process of finding the best values is called hyperparameter tuning.

7.6 Dropout and Multiple Windows | 93

There are frameworks that can automatically find the best parameters by trying vari‐
ous combinations. Since they do need to train the model many times, you need to
either be patient or have access to multiple instances to train your models in parallel.

7.7 Building a Word-Level Model
Problem
Tweets are words, not just random characters. How can you take advantage of this
fact?

Solution
Train a model that takes as input sequences of word embeddings, rather than sequen‐
ces of characters.

The first thing to do is to tokenize our tweets. We’ll construct a tokenizer that keeps
the top 50,000 words, apply it to our training and test sets, and then pad both so they
have a uniform length:

VOCAB_SIZE = 50000
tokenizer = Tokenizer(num_words=VOCAB_SIZE)
tokenizer.fit_on_texts(tweets['text'])
training_tokens = tokenizer.texts_to_sequences(train_tweets['text'])
test_tokens = tokenizer.texts_to_sequences(test_tweets['text'])
max_num_tokens = max(len(x) for x in chain(training_tokens, test_tokens))
training_tokens = pad_sequences(training_tokens, maxlen=max_num_tokens)
test_tokens = pad_sequences(test_tokens, maxlen=max_num_tokens)

We can have our model get started quickly by using pretrained embeddings (see
Chapter 3). We’ll load the weights with a utility function, load_wv2, which will load
the Word2vec embeddings and match them to the words in our corpus. This will
construct a matrix with a row for each of our tokens containing the weights from the
Word2vec model:

def load_w2v(tokenizer=None):
 w2v_model = gensim.models.KeyedVectors.load_word2vec_format(
 word2vec_vectors, binary=True)

 total_count = sum(tokenizer.word_counts.values())
 idf_dict = {k: np.log(total_count/v)
 for (k,v) in tokenizer.word_counts.items()}

 w2v = np.zeros((tokenizer.num_words, w2v_model.syn0.shape[1]))
 idf = np.zeros((tokenizer.num_words, 1))

 for k, v in tokenizer.word_index.items():
 if < tokenizer.num_words and k in w2v_model:
 w2v[v] = w2v_model[k]

94 | Chapter 7: Suggesting Emojis

 idf[v] = idf_dict[k]

 return w2v, idf

We can now create a model very similar to our character model, mostly just changing
how we process the input. Our input takes a sequence of tokens and the embedding
layer looks each of those tokens up in the matrix we just created:

 message = Input(shape=(max_num_tokens,), dtype='int32', name='title')
 embedding = Embedding(mask_zero=False, input_dim=vocab_size,
 output_dim=embedding_weights.shape[1],
 weights=[embedding_weights],
 trainable=False,
 name='cnn_embedding')(message)

This model works, but not as well as the character model. We can fiddle with the vari‐
ous hyperparameters, but the gap is quite big (38% precision for the character-level
model versus 30% for the word-level model). There is one thing we can change that
does make a difference—setting the embedding layer’s trainable property to True.
This helps to get the precision for the word-level model up to 36%, but it also means
that we’re using the wrong embeddings. We’ll take a look at fixing that in the next
recipe.

Discussion
A word-level model has a bigger view of the input data than a character-level model
because it looks at clusters of words rather than clusters of characters. Rather than
using the one-hot encoding we used for characters, we use word embeddings to get
started quickly. Here, we represent each word by a vector representing the semantic
value of that word as an input to the model. (See Chapter 3 for more information on
word embeddings.)

The model presented in this recipe doesn’t outperform our character-level model and
doesn’t do much better than the Bayesian model we saw in Recipe 7.1. This indicates
that the weights from our pretrained word embeddings are a bad match for our prob‐
lem. Things work a lot better if we set the embedding layer to trainable; the model
improves if we allow it to change those embeddings. We’ll look at this in more detail
in the next recipe.

That the weights aren’t a good match is not all that surprising. The Word2vec model
was trained on Google News, which has a rather different use of language than what
we find on average on social media. Popular hashtags, for example, won’t occur in the
Google News corpus, while they seem rather important for classifying tweets.

7.7 Building a Word-Level Model | 95

7.8 Constructing Your Own Embeddings
Problem
How can you acquire word embeddings that match your corpus?

Solution
Train your own word embeddings.

The gensim package not only lets us use a pretrained embedding model, it also makes
it possible to train new embeddings. The only thing it needs to do so is a generator
that produces sequences of tokens. It will use this to build up a vocabulary and then
go on to train a model by going through the generator multiple times. The following
object will go through a stream of tweets, clean them up, and tokenize them:

class TokensYielder(object):
 def __init__(self, tweet_count, stream):
 self.tweet_count = tweet_count
 self.stream = stream

 def __iter__(self):
 print('!')
 count = self.tweet_count
 for tweet in self.stream:
 if tweet.get('lang') != 'en':
 continue
 text = tweet['text']
 text = html.unescape(text)
 text = RE_WHITESPACE.sub(' ', text)
 text = RE_URL.sub(' ', text)
 text = strip_accents(text)
 text = ''.join(ch for ch in text if ord(ch) < 128)
 if text.startswith('RT '):
 text = text[3:]
 text = text.strip()
 if text:
 yield text_to_word_sequence(text)
 count -= 1
 if count <= 0:
 break

We can now train the model. The sensible way to do it is to collect a week or so of
tweets, save them in a set of files (one JSON document per line is a popular format),
and then pass a generator that goes through the files into the TokensYielder.

Before we set off to do this and wait a week for our tweets to dribble in, we can test if
this works at all by just getting 100,000 filtered tweets:

96 | Chapter 7: Suggesting Emojis

tweets = list(TokensYielder(100000,
 twitter.TwitterStream(auth=auth).statuses.sample()))

And then construct the model with:

model = gensim.models.Word2Vec(tweets, min_count=2)

Looking at the closest neighbors of the word “love” shows us that we have indeed our
own domain-specific embeddings—only on Twitter is “453” related to “love,” since
online it is short for “cool story, bro”:

model.wv.most_similar(positive=['love'], topn=5)

[('hate', 0.7243724465370178),
 ('loved', 0.7227891087532043),
 ('453', 0.707709789276123),
 ('melanin', 0.7069753408432007),
 ('appreciate', 0.696381688117981)]

“Melanin” is slightly less expected.

Discussion
Using existing word embeddings is a great way to get started quickly but is only suit‐
able to the extent that the text we’re processing is similar to the text that the embed‐
dings were trained on. In situations where this is not the case and where we have
access to a large body of text similar to what we are training on, we can easily train
our own word embeddings.

As we saw in the previous recipe, an alternative to training fresh embeddings is to
take existing embeddings but set the trainable property of the layer to True. This
will make the network adjust the weights of the words in the embedding layer and
find new ones where they are missing.

7.9 Using a Recurrent Neural Network for Classification
Problem
Surely there’s a way to take advantage of the fact that a tweet is a sequence of words.
How can you do this?

Solution
Use a word-level recurrent network to do the classification.

Convolutional networks are good for spotting local patterns in an input stream. For
sentiment analysis this often works quite well; certain phrases influence the sentiment
of a sentence independently of where they appear. The task of suggesting emojis has a
time element in it, though, that we don’t take advantage of using a CNN. The emoji

7.9 Using a Recurrent Neural Network for Classification | 97

associated with a tweet is often the conclusion of the tweet. In this sort of situation,
an RNN can be a better fit.

We saw how we can teach RNNs to generate texts in Chapter 5. We can use a similar
approach for suggesting emojis. Just like with the word-level CNN, we’ll feed in
words converted to their embeddings. A one-layer LSTM does quite well:

def create_lstm_model(vocab_size, embedding_size=None, embedding_weights=None):
 message = layers.Input(shape=(None,), dtype='int32', name='title')
 embedding = Embedding(mask_zero=False, input_dim=vocab_size,
 output_dim=embedding_weights.shape[1],
 weights=[embedding_weights],
 trainable=True,
 name='lstm_embedding')(message)

 lstm_1 = layers.LSTM(units=128, return_sequences=False)(embedding)
 category = layers.Dense(units=len(emojis), activation='softmax')(lstm_1)

 model = Model(
 inputs=[message],
 outputs=[category],
)
 model.compile(loss='sparse_categorical_crossentropy',
 optimizer='rmsprop', metrics=['accuracy'])
 return model

After 10 epochs we reach a precision of 50% on training and 40% on the test set, out‐
performing the CNN model by quite a bit.

Discussion
The LSTM model we used here strongly outperforms our word-level CNN. We can
attribute this superior performance to the fact that tweets are sequences, where what
happens at the end of a tweet has a different impact from what happens at the begin‐
ning.

Since our character-level CNN tended to do better than our word-level CNN and our
word-level LSTM does better than our character-level CNN, we might wonder if a
character-level LSTM wouldn’t be even better. It turns out it isn’t.

The reason for this is that if we feed an LSTM one character at a time, it will mostly
have forgotten what happened at the beginning of the tweet by the time it gets to the
end. If we feed the LSTM one word at a time, it’s able to overcome this. Note also that
our character-level CNN doesn’t actually handle the input one character at a time. We
use sequences of four, five, or six characters at a time and have multiple convolutions
stacked on top of each other, such that the average tweet has at the highest level only
three feature vectors left.

98 | Chapter 7: Suggesting Emojis

We could try to combine the two, though, by creating a CNN that compresses the
tweet into fragments with a higher level of abstraction and then feeding those vectors
into an LSTM to draw the final conclusion. This is of course close to how our word-
level LSTM works. Instead of using a CNN to classify fragments of text, we use the
pretrained word embeddings to do the same on a per-word level.

7.10 Visualizing (Dis)Agreement
Problem
You’d like to visualize how the different models you’ve built compare in practice.

Solution
Use Pandas to show where they agree and disagree.

Precision gives us an idea of how well our models are doing. Suggesting emojis is a
rather noisy task though, so it can be very useful to take a look at how our various
models are doing side-by-side. Pandas is a great tool for this.

Let’s start by getting the test data for our character model in as a vector, rather than a
generator:

test_char_vectors, _ = next(data_generator(test_tweets, None))

Now let’s run predictions on the first 100 items:

predictions = {
 label: [emojis[np.argmax(x)] for x in pred]
 for label, pred in (
 ('lstm', lstm_model.predict(test_tokens[:100])),
 ('char_cnn', char_cnn_model.predict(test_char_vectors[:100])),
 ('cnn', cnn_model.predict(test_tokens[:100])),
)
}

Now we can construct and display a Pandas DataFrame with the first 25 predictions
for each model next to the tweet text and the original emoji:

pd.options.display.max_colwidth = 128
test_df = test_tweets[:100].reset_index()
eval_df = pd.DataFrame({
 'content': test_df['text'],
 'true': test_df['emoji'],
 **predictions
})
eval_df[['content', 'true', 'char_cnn', 'cnn', 'lstm']].head(25)

7.10 Visualizing (Dis)Agreement | 99

This results in:

content true char_cnn cnn lstm
0 @Gurmeetramrahim @RedFMIndia @rjraunac #8DaysToLionHeart Great

1 @suchsmallgods I can’t wait to show him these tweets

2 @Captain_RedWolf I have like 20 set lol WAYYYYYY ahead of you

3 @OtherkinOK were just at @EPfestival, what a set! Next stop is @whelanslive on Friday
11th November 2016.

4 @jochendria: KathNiel with GForce Jorge. #PushAwardsKathNiels

5 Okay good

6 “Distraught means to be upset” “So that means confused right?” -@ReevesDakota

7 @JennLiri babe wtf call bck I’m tryna listen to this ring tone

8 does Jen want to be friends? we can so be friends. love you, girl. #BachelorInParadise

9 @amwalker38: Go Follow these hot accounts @the1stMe420 @DanaDeelish
@So_deelish @aka_teemoney38 @CamPromoXXX @SexyLThings @l...

10 @gspisak: I always made fun of the parents that show up 30+ mins early to pick up
their kids today thats me At least I got a...

11 @ShawnMendes: Toronto Billboard. So cool! @spotify #ShawnXSpotify go find them in
your city

12 @kayleeburt77 can I have your number? I seem to have lost mine.

13 @KentMurphy: Tim Tebow hits a dinger on his first pitch seen in professional ball

14 @HailKingSoup...

15 @RoxeteraRibbons Same and I have to figure to prove it

16 @theseoulstory: September comebacks: 2PM, SHINee, INFINITE, BTS, Red Velvet, Gain,
Song Jieun, Kanto...

17 @VixenMusicLabel - Peace & Love

18 @iDrinkGallons sorry

19 @StarYouFollow: 19- Frisson

20 @RapsDaiIy: Don’t sleep on Ugly God

21 How tf do all my shifts get picked up so quickly?! Wtf

22 @ShadowhuntersTV: #Shadowhunters fans, how many s would YOU give this father-
daughter #FlashbackFriday bonding moment betwee...

23 @mbaylisxo: thank god I have a uniform and don’t have to worry about what to wear
everyday

24 Mood swings like...

Browsing these results, we can see that often when the models get it wrong, they land
on an emoji that is very similar to the one in the original tweet. Sometimes the pre‐
dictions seem to make more sense than what was actually used, and sometimes none
of the models do very well.

100 | Chapter 7: Suggesting Emojis

Discussion
Looking at the actual data can help us see where our models go wrong. In this case a
simple thing to improve performance would be to treat all the emojis that are similar
as the same. The different hearts and different smiley faces express more or less the
same things.

One alternative would be to learn embeddings for the emojis. This would give us a
notion of how related emojis are. We could then have a loss function that takes this
similarity into account, rather than a hard correct/incorrect measure.

7.11 Combining Models
Problem
You’d like to harness the combined prediction power of your models to get a better
answer.

Solution
Combine the models into an ensemble model.

The idea of the wisdom of crowds—that the average of the opinions of a group is
often more accurate than any specific opinion—also goes for machine learning mod‐
els. We can combine all three models into one by using three inputs and combining
the outputs of our models using the Average layer from Keras:

def prediction_layer(model):
 layers = [layer for layer in model.layers
 if layer.name.endswith('_predictions')]
 return layers[0].output

def create_ensemble(*models):
 inputs = [model.input for model in models]
 predictions = [prediction_layer(model) for model in models]
 merged = Average()(predictions)
 model = Model(
 inputs=inputs,
 outputs=[merged],
)
 model.compile(loss='sparse_categorical_crossentropy',
 optimizer='rmsprop',
 metrics=['accuracy'])
 return model

We need a different data generator to train this model; rather than specifying one
input, we now have three. Since they have different names, we can have our data

7.11 Combining Models | 101

generator yield a dictionary to feed the three inputs. We also need to do some wran‐
gling to get the character-level data to line up with the word-level data:

def combined_data_generator(tweets, tokens, batch_size):
 tweets = tweets.reset_index()
 while True:
 batch_idx = random.sample(range(len(tweets)), batch_size)
 tweet_batch = tweets.iloc[batch_idx]
 token_batch = tokens[batch_idx]
 char_vec = np.zeros((batch_size, max_sequence_len, len(chars)))
 token_vec = np.zeros((batch_size, max_num_tokens))
 y = np.zeros((batch_size,))
 it = enumerate(zip(token_batch, tweet_batch.iterrows()))
 for row_idx, (token_row, (_, tweet_row)) in it:
 y[row_idx] = emoji_to_idx[tweet_row['emoji']]
 for ch_idx, ch in enumerate(tweet_row['text']):
 char_vec[row_idx, ch_idx, char_to_idx[ch]] = 1
 token_vec[row_idx, :] = token_row
 yield {'char_cnn_input': char_vec,
 'cnn_input': token_vec,
 'lstm_input': token_vec}, y

We can then train the model using:

BATCH_SIZE = 512
ensemble.fit_generator(
 combined_data_generator(train_tweets, training_tokens, BATCH_SIZE),
 epochs=20,
 steps_per_epoch=len(train_tweets) / BATCH_SIZE,
 verbose=2,
 callbacks=[early]
)

Discussion
Combined models or ensemble models are a great way to combine various
approaches to a problem in one model. It is not a coincidence that in popular
machine learning competitions like Kaggle the winners almost always are based on
this technique.

Instead of keeping the models almost completely separate and then joining them up
at the very end using the Average layer, we could also join them earlier, for example
by concatenating the first dense layer of each of the models. Indeed, this is to some
extent what we did with the more complex CNN, where we used various window
sizes for small subnets that then were concatenated for a final conclusion.

102 | Chapter 7: Suggesting Emojis

CHAPTER 8

Sequence-to-Sequence Mapping

In this chapter we’ll look at using sequence-to-sequence networks to learn transfor‐
mations between pieces of text. This is a relatively new technique with tantalizing
possibilities. Google claims to have made huge improvements to its Google Translate
product using this technique; moreover, it has open sourced a version that can learn
language translations purely based on parallel texts.

We won’t go that far to start with. Instead, we’ll start out with a simple model that
learns the rules for pluralization in English. After that we’ll extract dialogue from
19th-century novels from Project Gutenberg and train a chatbot on them. For this
last project we’ll have to abandon the safety of Keras running in a notebook and will
use Google’s open source seq2seq toolkit.

The following notebooks contain the code relevant for this chapter:

08.1 Sequence to sequence mapping
08.2 Import Gutenberg
08.3 Subword tokenizing

8.1 Training a Simple Sequence-to-Sequence Model
Problem
How do you train a model to reverse engineer a transformation?

Solution
Use a sequence-to-sequence mapper.

In Chapter 5 we saw how we can use recurrent networks to “learn” the rules of a
sequence. The model learns how to best represent a sequence such that it can predict

103

what the next element will be. Sequence-to-sequence mapping builds on this, but
now the model learns to predict a different sequence based on the first one.

We can use this to learn all kinds of transformations. Let’s consider converting singu‐
lar nouns into plural nouns in English. At first sight it might seem that this is just a
matter of appending an s to a word, but when you look more closely it turns out that
the rules are really quite a bit more complicated.

The model is very similar to what we were using in Chapter 5, but now it is not just
the input that is a sequence, but also the output. This is achieved using the RepeatVec
tor layer, which allows us to map from the input to the output vector:

def create_seq2seq(num_nodes, num_layers):
 question = Input(shape=(max_question_len, len(chars),
 name='question'))
 repeat = RepeatVector(max_expected_len)(question)
 prev = input
 for _ in range(num_layers)::
 lstm = LSTM(num_nodes, return_sequences=True,
 name='lstm_layer_%d' % (i + 1))(prev)
 prev = lstm
 dense = TimeDistributed(Dense(num_chars, name='dense',
 activation='softmax'))(prev)
 model = Model(inputs=[input], outputs=[dense])
 optimizer = RMSprop(lr=0.01)
 model.compile(loss='categorical_crossentropy',
 optimizer=optimizer,
 metrics=['accuracy'])
 return model

Preprocessing of the data happens much as before. We read in the data from the file
data/plurals.txt and vectorize it. One trick to consider is whether to reverse the
strings in the input. If the input is reversed, then generating the output is like unroll‐
ing the processing, which might be easier.

It takes the model quite a bit of time to reach a precision in the neighborhood of 99%.
Most of this time, though, is spent on learning to reproduce the prefixes that the sin‐
gular and plural forms of the words share. In fact, when we check the model’s perfor‐
mance when it has reached over 99% precision, we see that most of the errors are still
in that area.

Discussion
Sequence-to-sequence models are powerful tools that, given enough resources, can
learn almost any transformation. Learning the rules for going from singular to plural
in English is just a simple example. These models are essential elements of the state-
of-the-art machine translation solutions offered by the leading tech companies.

104 | Chapter 8: Sequence-to-Sequence Mapping

Simpler models like the one from this recipe can learn how to add numbers in
Roman notation or learn to translate between written English and phonetic English,
which is a useful first step when building a text-to-speech system.

In the next few recipes we’ll see how we can use this technique to train a chatbot
based on dialogues extracted from 19th-century novels.

8.2 Extracting Dialogue from Texts
Problem
How can you acquire a large corpus of dialogues?

Solution
Parse some texts available from Project Gutenberg and extract all the dialogue.

Let’s start with downloading a set of books from Project Gutenberg. We could down‐
load all of them, but here we’ll focus on works whose authors were born after 1835.
This keeps the dialogue somewhat modern. The data/books.json document contains
the relevant references:

with open('data/gutenberg_index.json') as fin:
 authors = json.load(fin)
recent = [x for x in authors
 if 'birthdate' in x and x['birthdate'] > 1830]
[(x['name'], x['birthdate'], x['english_books']) for x in recent[:5]]

[('Twain, Mark', 1835, 210),
 ('Ebers, Georg', 1837, 164),
 ('Parker, Gilbert', 1862, 135),
 ('Fenn, George Manville', 1831, 128),
 ('Jacobs, W. W. (William Wymark)', 1863, 112)]

The books are mostly laid out consistently in ASCII. Paragraphs are separated by
double newlines, and dialogue almost always uses double quotes. A small fraction of
books also use single quotes, but we’ll just ignore those, since single quotes also occur
elsewhere in the texts. We’ll assume a conversation continues as long as the text out‐
side of the quotes is less than 100 characters long (as in “Hi,” he said, “How are you
doing?”):

def extract_conversations(text, quote='"'):
 paragraphs = PARAGRAPH_SPLIT_RE.split(text.strip())
 conversations = [['']]
 for paragraph in paragraphs:
 chunks = paragraph.replace('\n', ' ').split(quote)
 for i in range((len(chunks) + 1) // 2):
 if (len(chunks[i * 2]) > 100
 or len(chunks) == 1) and conversations[-1] != ['']:

8.2 Extracting Dialogue from Texts | 105

 if conversations[-1][-1] == '':
 del conversations[-1][-1]
 conversations.append([''])
 if i * 2 + 1 < len(chunks):
 chunk = chunks[i * 2 + 1]
 if chunk:
 if conversations[-1][-1]:
 if chunk[0] >= 'A' and chunk[0] <= 'Z':
 if conversations[-1][-1].endswith(','):
 conversations[-1][-1] = \
 conversations[-1][-1][:-1]
 conversations[-1][-1] += '.'
 conversations[-1][-1] += ' '
 conversations[-1][-1] += chunk
 if conversations[-1][-1]:
 conversations[-1].append('')

 return [x for x in conversations if len(x) > 1]

Processing this over the top 1,000 authors gets us a good set of dialogue data:

for author in recent[:1000]:
 for book in author['books']:
 txt = strip_headers(load_etext(int(book[0]))).strip()
 conversations += extract_conversations(txt)

This takes some time, so we’d better save the results to a file:

with open('gutenberg.txt', 'w') as fout:
 for conv in conversations:
 fout.write('\n'.join(conv) + '\n\n')

Discussion
As we saw in Chapter 5, Project Gutenberg is a good source for freely usable texts, as
long as we don’t mind that they are a little bit older since they have to be out of copy‐
right.

The project was started at a time before concerns around layout and illustrations
played a role, and therefore all documents are produced in pure ASCII. While this
isn’t the best format for actual books, it makes parsing relatively easy. Paragraphs are
separated by double newlines and there’s no mucking around with smart quotes or
any markup.

8.3 Handling an Open Vocabulary
Problem
How do you tokenize a text completely with only a fixed number of tokens?

106 | Chapter 8: Sequence-to-Sequence Mapping

Solution
Use subword units for tokenizing.

In the previous chapter we just skipped words that weren’t found in our vocabulary of
the top 50,000 words. With subword-unit tokenizing, we break up words that don’t
appear very often into subunits that do. We continue doing so until all words and
subunits fit our fixed-size vocabulary.

For example, if we have the words working and worked, we could break them up into
work-, -ed and -ing. These three tokens will most likely overlap with others in our
vocabulary, so this could reduce the size of our overall vocabulary. The algorithm
used is straightforward. We split all tokens up into their individual letters. At this
point each letter is a subword token, and presumably we have less than our maximum
number of tokens. We then find which pair of subword tokens occurs most in our
tokens. In English that would typically be (t, h). We then join those subword tokens.
This will usually increase the number of subword tokens by one, unless one of the
items in our pair is now exhausted. We keep doing this until we have the desired
number of subword and word tokens.

Even though the code is not complicated, it makes sense to use the open source ver‐
sion of this algorithm. The tokenizing is a three-step process.

The first step is to tokenize our corpus. The default tokenizer just splits the text,
which means that it keeps all punctuation, usually attached to the previous word. We
want something more advanced. We want all punctuation stripped except for the
question mark. We’ll also convert everything to lowercase and replace underscores
with spaces:

RE_TOKEN = re.compile('(\w+|\?)', re.UNICODE)
token_counter = Counter()
with open('gutenberg.txt') as fin:
 for line in fin:
 line = line.lower().replace('_', ' ')
 token_counter.update(RE_TOKEN.findall(line))
with open('gutenberg.tok', 'w') as fout:
 for token, count in token_counter.items():
 fout.write('%s\t%d\n' % (token, count))

Now we can learn the subword tokens:

./learn_bpe.py -s 25000 < gutenberg.tok > gutenberg.bpe

And then we can apply them to any text:

./apply_bpe.py -c gutenberg.bpe < some_text.txt > some_text.bpe.txt

The resulting some_text.bpe.txt looks like our original corpus, except that rare tokens
are broken up and end with @@ indicating the continuation.

8.3 Handling an Open Vocabulary | 107

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt

Discussion
Tokenizing a text into words is an effective way of reducing the size of a document.
As we saw in Chapter 7, it also allows us to kick-start our learning by loading up pre‐
trained word embeddings. There is a drawback, though: larger texts contain so many
different words that we can’t hope to cover them all. One solution is to just skip the
words that are not in our vocabulary, or replace them with a fixed UNKNOWN token.
This doesn’t work too badly for sentiment analysis, but for tasks where we want to
generate an output text it is rather unsatisfactory. Subword-unit tokenizing is a good
solution in this situation.

Another option that has in recent times gotten some traction is to train a character-
level model to produce embeddings for words that are not in the vocabulary.

8.4 Training a seq2seq Chatbot
Problem
You want to train a deep learning model to reproduce the characteristics of a dialogue
corpus.

Solution
Use Google’s seq2seq framework.

The model from Recipe 8.1 is capable of learning relations between sequences—even
fairly complex ones. However, sequence-to-sequence models are hard to tune for per‐
formance. In early 2017, Google published seq2seq, a library specifically developed
for this type of application that runs directly on TensorFlow. It lets us focus on the
model hyperparameters, rather than the nitty-gritty of the code.

The seq2seq framework wants its input split up into training, evaluation, and devel‐
opment sets. Each set should contain a source and a target file, with matching lines
defining the input and the output of the model. In our case the source should contain
the prompt of the dialogue, and the target the answer. The model will then try to
learn how to convert from prompt to answer, effectively learning how to conduct a
dialogue.

The first step is to split our dialogues into (source, target) pairs. For each consecutive
pair of lines in the dialogues, we extract the first and last sentence as a source and
target:

RE_TOKEN = re.compile('(\w+|\?)', re.UNICODE)
def tokenize(st):
 st = st.lower().replace('_', ' ')
 return ' '.join(RE_TOKEN.findall(st))

108 | Chapter 8: Sequence-to-Sequence Mapping

pairs = []
prev = None
with open('data/gutenberg.txt') as fin:
 for line in fin:
 line = line.strip()
 if line:
 sentences = nltk.sent_tokenize(line)
 if prev:
 pairs.append((prev, tokenize(sentences[0])))
 prev = tokenize(sentences[-1])
 else:
 prev = None

Now let’s shuffle our pairs and split them into our three groups, with the dev and
test sets each representing 5% of our data:

random.shuffle(pairs)
ss = len(pairs) // 20

data = {'dev': pairs[:ss],
 'test': pairs[ss:ss * 2],
 'train': pairs[ss * 2:]}

Next we need to unpack the pairs and put them into the right directory structure:

for tag, pairs2 in data.items():
 path = 'seq2seq/%s' % tag
 if not os.path.isdir(path):
 os.makedirs(path)
 with open(path + '/sources.txt', 'wt') as sources:
 with open(path + '/targets.txt', 'wt') as targets:
 for source, target in pairs2:
 sources.write(source + '\n')
 targets.write(target + '\n')

Time to train the network. Clone the seq2seq repository and install the dependencies.
You might want to do this in a separate virtualenv:

git clone https://github.com/google/seq2seq.git
cd seq2seq
pip install -e .

Now let’s set an environment variable pointing to the data we’ve put together:

Export SEQ2SEQROOT=/path/to/data/seq2seq

The seq2seq library contains a number of configuration files that we can mix and
match in the example_configs directory. In this case, we want to train a large model
with:

python -m bin.train \ --config_paths=" ./example_configs/nmt_large.yml,
 ./example_configs/train_seq2seq.yml" \
 --model_params "

8.4 Training a seq2seq Chatbot | 109

 vocab_source: $SEQ2SEQROOT/gutenberg.tok
 vocab_target: $SEQ2SEQROOT/gutenberg.tok" \
 --input_pipeline_train "
 class: ParallelTextInputPipeline
 params:
 source_files:
 - $SEQ2SEQROOT/train/sources.txt
 target_files:
 - $SEQ2SEQROOT/train/targets.txt" \
 --input_pipeline_dev "
 class: ParallelTextInputPipeline
 params:
 source_files:
 - $SEQ2SEQROOT/dev/sources.txt
 target_files:
 - $SEQ2SEQROOT/dev/targets.txt" \
 --batch_size 1024 --eval_every_n_steps 5000 \
 --train_steps 5000000 \
 --output_dir $SEQ2SEQROOT/model_large

Unfortunately, even on a system with a capable GPU it will take days and days before
we get some decent results. The zoo folder in the notebook contains a pretrained
model though, if you can’t wait.

The library doesn’t provide a way to run the model interactively. In Chapter 16 we’ll
look into how we can do this, but for now we can quickly get some results by adding
our test questions to a file (for example, /tmp/test_questions.txt) and running:

python -m bin.infer \
 --tasks "
 - class: DecodeText" \
 --model_dir $SEQ2SEQROOT/model_large \
 --input_pipeline "
 class: ParallelTextInputPipeline
 params:
 source_files:
 - '/tmp/test_questions.txt'"

A simple conversation works:

> hi
hi
> what is your name ?
sam barker
> how do you feel ?
Fine
> good night
good night

With more complex sentences it is a bit hit or miss.

110 | Chapter 8: Sequence-to-Sequence Mapping

Discussion
The seq2seq model’s primary use case seems to be automatic translation, although it
has also been effective for captioning images and summarizing texts. The documenta‐
tion contains a tutorial on how to train a model that learns decent English–German
translations in weeks or months, depending on your hardware. Google claims that
making a sequence-to-sequence model central to its machine translation efforts has
improved the quality dramatically.

One interesting way to think about sequence-to-sequence mapping is to see it as an
embedding process. For translations, both the source and the target sentence are pro‐
jected into a multidimensional space and the model learns a projection such that sen‐
tences that mean the same thing end up around the same point in that space. This
leads to the intriguing possibility of “zero-shot” translations; if a model learns to
translate between Finnish and English and then later between English and Greek and
it uses the same semantic space, it can also be used to directly translate between Fin‐
nish and Greek. This then opens up the possibility of “thought vectors,” embeddings
for relatively complex ideas that have similar properties to the “word vectors” we saw
in Chapter 3.

8.4 Training a seq2seq Chatbot | 111

https://google.github.io/seq2seq/nmt/

CHAPTER 9

Reusing a Pretrained Image Recognition
Network

Image recognition and computer vision is one of the areas where deep learning has
made some significant impacts. Networks with dozens of layers, sometimes more
than a hundred, have proven to be very effective in image classification tasks, to the
point where they outperform humans.

Training such networks, though, is very involved, both in terms of processing power
and the amount of training images needed. Fortunately, we often don’t have to start
from scratch, but can reuse an existing network.

In this chapter we’ll walk through how to load one of the five pretrained networks
that are supported by Keras, go into the preprocessing that is needed before we can
feed an image into a network, and finally show how we can run the network in infer‐
ence mode, where we ask it what it thinks the image contains.

We’ll then look into what is known as transfer learning—taking a pretrained network
and partly retraining it on new data for a new task. We’ll first acquire a set of images
from Flickr containing cats and dogs. We’ll then teach our network to tell them apart.
This will be followed by an application where we use this network to improve upon
Flickr’s search results. Finally, we’ll download a set of images that contain pictures of
37 different types of pets and train a network that beats the average human at labeling
them.

The following notebooks contain the code referred to in this chapter:

09.1 Reusing a pretrained image recognition network
09.2 Images as embeddings
09.3 Retraining

113

9.1 Loading a Pretrained Network
Problem
You’d like to know how to instantiate a pretrained image recognition network.

Solution
Use Keras to load up a pretrained network, downloading the weights if necessary.

Keras doesn’t only make it easier to compose networks, it also ships with references to
a variety of pretrained networks that we can easily load:

model = VGG16(weights='imagenet', include_top=True)
model.summary()

This will also print a summary of the network, showing its various layers. This is use‐
ful when we want to use the network, since it not only shows the names of the layers
but also their sizes and how they are connected.

Discussion
Keras ships with access to a number of popular image recognition networks that can
be readily downloaded. The downloads are cached in ~/.keras/models/, so you’ll usu‐
ally only have to wait for the download the first time.

In total we can use five different networks (VGG16, VGG19, ResNet50, Inception V3,
and Xception). They differ in complexity and architecture, though for most simpler
applications it probably doesn’t matter which model you pick. VGG16 has “only” a
depth of 16 layers, which makes it easier to inspect. Inception is a much deeper net‐
work but has 85% fewer variables, which makes it quicker to load and less memory-
intensive.

9.2 Preprocessing Images
Problem
You’ve loaded a pretrained network, but now you need to know how to preprocess an
image before feeding it into the network.

Solution
Crop and resize the image to the right size and normalize the colors.

All of the pretrained networks included in Keras expect their inputs to be square and
of a certain size. They also expect the color channels to be normalized. Normalizing

114 | Chapter 9: Reusing a Pretrained Image Recognition Network

the images while training makes it easier for the networks to focus on the things that
matter and not get “distracted.”

We can use PIL/Pillow to load and center-crop an image:

img = Image.open('data/cat.jpg')
w, h = img.size
s = min(w, h)
y = (h - s) // 2
x = (w - s) // 2
img = img.crop((x, y, s, s))

We can get the desired size from the first layer of the network by querying the
input_shape property. This property also contains the color depth, but depending on
the architecture this might be the first or the last dimension. By calling max on it we’ll
get the right number:

target_size = max(model.layers[0].input_shape)
img = img.resize((target_size, target_size), Image.ANTIALIAS)
imshow(np.asarray(img))

Finally, we need to convert the image to a format suitable for the network to process.
This involves converting the image to an array, expanding the dimensions so it’s a
batch, and normalizing the colors:

np_img = image.img_to_array(img)
img_batch = np.expand_dims(np_img, axis=0)
pre_processed = preprocess_input(img_batch)
pre_processed.shape

(1, 224, 224, 3)

We are now ready to classify the image!

Discussion
Center cropping is not the only option. In fact, Keras has a function in the image
module called load_img that will load and resize an image, but doesn’t do the crop‐

9.2 Preprocessing Images | 115

ping. It is a good general-purpose strategy for converting an image to the size that the
network expects, though.

Center cropping is often the best strategy, since what we want to classify typically sits
in the middle of our image and straightforward resizing distorts the picture. But in
some cases, special strategies might work better. For example, if we have very tall
images on a white background, then center cropping might cut off too much of the
actual image, while resizing leads to large distortions. In this case a better solution
might be to pad the image with white pixels on either side to make it square.

9.3 Running Inference on Images
Problem
If you have an image, how do you find out what it shows?

Solution
Run inference on the image using the pretrained network.

Once we have the image in the right format, we can call predict on the model:

features = model.predict(pre_processed)
features.shape

(1, 1000)

The predictions are returned as a numpy array shaped (1, 1,000)—a vector of 1,000 for
each image in the batch. Each entry in the vector corresponds to a label, while the
value of the entry indicates how likely it is that the image represents the label.

Keras has the convenient decode_predictions function to find the best-scoring
entries and return the labels and corresponding scores:

decode_predictions(features, top=5)

Here are the results for the image in the previous recipe:

[[(u'n02124075', u'Egyptian_cat', 0.14703247),
 (u'n04040759', u'radiator', 0.12125628),
 (u'n02123045', u'tabby', 0.097638465),
 (u'n03207941', u'dishwasher', 0.047418527),
 (u'n02971356', u'carton', 0.047036409)]]

The network thinks we’re looking at a cat. The second guess of it being a radiator is a
bit of surprise, although the background does look a bit like a radiator.

116 | Chapter 9: Reusing a Pretrained Image Recognition Network

Discussion
The last layer of this network has a softmax activation function. The softmax function
makes sure that the sum for the activations of all the classes is equal to 1. Because of
how the network learns when it is training, these activations can be thought of as the
likelihood that the image matches the class.

The pretrained networks all come with a thousand classes of images they can recog‐
nize. The reason for this is that they are all trained for the ImageNet competition.
This makes it easy to compare their relative performance, but unless we happen to
want to detect the images that are part of this competition, it is not immediately use‐
ful for practical purposes. In the next chapter we’ll see how we can use these pre‐
trained networks to classify images of our own choosing.

Another restriction is that these types of networks only return one answer, while
often there are multiple objects in an image. We’ll look into resolving this in Chap‐
ter 11.

9.4 Using the Flickr API to Collect a Set of Labeled Images
Problem
How do you quickly put together a set of labeled images for experimentation?

Solution
Use the search method of the Flickr API.

To use the Flickr API you need to have an application key, so head over to https://
www.flickr.com/services/apps/create to register your app. Once you have a key and a
secret, you can search for images using the flickrapi library:

flickr = flickrapi.FlickrAPI(FLICKR_KEY, FLICKR_SECRET, format='parsed-json')
res = flickr.photos.search(text='"cat"', per_page='10', sort='relevance')
photos = res['photos']['photo']

The photos returned by Flickr don’t by default contain a URL. We can compose the
URL from the record though:

def flickr_url(photo, size=''):
 url = 'http://farm{farm}.staticflickr.com/{server}/{id}_{secret}{size}.jpg'
 if size:
 size = '_' + size
 return url.format(size=size, **photo)

9.4 Using the Flickr API to Collect a Set of Labeled Images | 117

http://www.image-net.org/challenges/LSVRC/
https://www.flickr.com/services/apps/create
https://www.flickr.com/services/apps/create

The HTML method is the easiest way to display images inside a notebook:

tags = [''
 .format(flickr_url(photo)) for photo in photos]
HTML(''.join(tags))

This should show us a bunch of cat pictures. After we’ve confirmed that we have
decent images, let’s download a slightly bigger test set:

def fetch_photo(dir_name, photo):
 urlretrieve(flickr_url(photo), os.path.join(dir_name, photo['id'] + '.jpg'))

def fetch_image_set(query, dir_name=None, count=250, sort='relevance'):
 res = flickr.photos.search(text='"{}"'.format(query),
 per_page=count, sort=sort)['photos']['photo']
 dir_name = dir_name or query
 if not os.path.exists(dir_name):
 os.makedirs(dir_name)
 with multiprocessing.Pool() as p:
 p.map(partial(fetch_photo, dir_name), res)

fetch_image_set('cat')

Discussion
Getting good training data is always a key concern when running experiments in
deep learning. When it comes to images, it is hard to beat the Flickr API, giving us
access to billions of images. Not only can we find images based on keywords and tags,
but also on where they were taken. We can also filter on how we can use the images.
For random experiments that isn’t really a factor, but if we want to republish the
images in some way this certainly comes in handy.

The Flickr API gives us access to general, user-generated images. There are other
APIs available that, depending on your purpose, might work better. In Chapter 10 we
look at how we can acquire images directly from Wikipedia. Getty Images provides a
good API for stock images, while 500px provides access to high-quality images
through its API. The last two have strict requirements for republishing, but are great
for experimentation.

9.5 Building a Classifier That Can Tell Cats from Dogs
Problem
You’d like to be able to classify images into one of two categories.

118 | Chapter 9: Reusing a Pretrained Image Recognition Network

http://developers.gettyimages.com/
https://github.com/500px/api-documentation

Solution
Train a support vector machine on top of the features coming out of a pretrained
network.

Let’s start by fetching a training set for dogs:

fetch_image_set('dog')

Load the images as one vector with the cats first, followed by the dogs:

images = [image.load_img(p, target_size=(224, 224))
 for p in glob('cat/*jpg') + glob('dog/*jpg')]
vector = np.asarray([image.img_to_array(img) for img in images])

Now load the pretrained model and construct a new model out of it with fc2 as its
output. fc2 is the last fully connected layer before the network assigns labels. The val‐
ues of this layer for an image describe the image in an abstract way. Another way to
put this is to say that this projects the image into a high-dimensional semantic space:

base_model = VGG16(weights='imagenet')
model = Model(inputs=base_model.input,
 outputs=base_model.get_layer('fc2').output)

Now we’ll run the model over all our images:

vectors = model.predict(vector)
vectors.shape

For every one of our 500 images, we now have a 4,096-dimensional vector character‐
izing that image. As in Chapter 4 we can construct a support vector machine to find
the distinction between cats and dogs in this space.

Let’s run the SVM and print our performance:

X_train, X_test, y_train, y_test = train_test_split(
 p, [1] * 250 + [0] * 250, test_size=0.20, random_state=42)

clf = svm.SVC(kernel='rbf')
clf.fit(X_train, y_train)
sum(1 for p, t in zip(clf.predict(X_test), y_test) if p != t)

Depending on which of the images we fetched, we should see precision around 90%.
We can take a look at the images for which we predicted the wrong class with the fol‐
lowing code:

mm = {tuple(a): b for a, b in zip(p, glob('cat/*jpg') + glob('dog/*jpg'))}
wrong = [mm[tuple(a)] for a, p, t in zip(X_test,
 clf.predict(X_test),
 y_test) if p != t]

for x in wrong:
 display(Image(x, width=150))

9.5 Building a Classifier That Can Tell Cats from Dogs | 119

All in all, our network is not doing too badly. We would be confused too about some
of these images labeled as cats or dogs!

Discussion
As we saw in Recipe 4.3, support vector machines are a good choice when we need a
classifier on top of high-dimensional spaces. Here we extract the output of an image
recognition network and treat those vectors as image embeddings. We let the SVM
find hyperplanes that separate the cats from the dogs. This works well for binary
cases. We can use SVMs for situations where we have more than two classes, but
things get more complicated and it might make more sense to add a layer to our net‐
work to do the heavy lifting. Recipe 9.7 shows how to do this.

A lot of the times the classifier doesn’t get the right answer, you can really blame the
quality of the search results. In the next recipe, we’ll take a look at how we can
improve search results using the image features we’ve extracted.

9.6 Improving Search Results
Problem
How do you filter out the outliers from a set of images?

Solution
Treat the features from the highest-but-one layer of the image classifier as image
embeddings and find the outliers in that space.

As we saw in the previous recipe, one of the reasons why our network sometimes
failed to distinguish between cats and dogs was that the images it saw weren’t very
good. Sometimes the images weren’t pictures of cats or dogs at all and the network
just had to guess.

The Flickr search API doesn’t return images that match the supplied text query, but
images whose tags, descriptions, or titles match the text. Even major search engines
have only recently started to take into account what can actually be seen in the images
they return. (So, a search for “cat” might return a picture of a lion captioned “look at
this big cat.”)

As long as the majority of the returned images do match the intent of the user, we can
improve upon the search by filtering out the outliers. For a production system it
might be worth exploring something more sophisticated; in our case, where we have
at most a few hundred images and thousands of dimensions, we can get away with
something simpler.

120 | Chapter 9: Reusing a Pretrained Image Recognition Network

Let’s start by getting some recent cat pictures. Since we sort by recent and not rele
vance here, we expect the search results to be slightly less accurate:

fetch_image_set('cat', dir_name='maybe_cat', count=100, sort='recent')

As before, we load the images as one vector:

maybe_cat_fns = glob('maybe_cat/*jpg')
maybe_cats = [image.load_img(p, target_size=(224, 224))
 for p in maybe_cat_fns]
maybe_cat_vectors = np.asarray([image.img_to_array(img)
 for img in maybe_cats])

We’ll look for outliers by first finding the average point in the “maybe cat” space:

centroid = maybe_cat_vectors.sum(axis=0) / len(maybe_cats)

Then we calculate the distances of the cat vectors to the centroid:

diffs = maybe_cat_vectors - centroid
distances = numpy.linalg.norm(diffs, axis=1)

And now we can take a look at the things that are least like the average cat:

sorted_idxs = np.argsort(distances)
for worst_cat_idx in sorted_idxs[-10:]:
 display(Image(maybe_cat_fns[worst_cat_idx], width=150))

Filtering out the noncats this way works reasonably well, but since the outliers dis‐
proportionately influence the average vector, the top of our list looks a bit noisy. One
way to improve upon this is to repeatedly recalculate the centroid only on top of the
results so far, like a poor man’s outlier filter:

to_drop = 90
sorted_idxs_i = sorted_idxs
for i in range(5):
 centroid_i = maybe_cat_vectors[sorted_idxs_i[:-to_drop]].sum(axis=0) /
 (len(maybe_cat_fns) - to_drop)
 distances_i = numpy.linalg.norm(maybe_cat_vectors - centroid_i, axis=1)
 sorted_idxs_i = np.argsort(distances_i)

This results in very decent top results.

Discussion
In this recipe we used the same technique from Recipe 9.5 to improve upon the
search results from Flickr. We can imagine the high-dimensional space with our
images as a large “point cloud.”

Rather than finding a hyperplane that separates the dogs from the cats, we try to find
the most central cat. We then assume that the distance to this archetypical cat is a
good measure for “catness.”

9.6 Improving Search Results | 121

We’ve taken a simplistic approach to finding the most central cat; just average the
coordinates, throw out the outliers, take the average again, and repeat. Ranking outli‐
ers in high-dimensional spaces is an active area of research and there are many inter‐
esting algorithms being developed.

9.7 Retraining Image Recognition Networks
Problem
How do you train a network to recognize images in a specialized category?

Solution
Train a classifier on top of the features extracted from a pretrained network.

Running an SVM on top of a pretrained network is a good solution if we have two
categories of images, but less suitable if we have a large number of classes to choose
from. The Oxford-IIIT Pet Dataset, for example, contains 37 different pet categories,
each of which has around 200 pictures.

Training a network from scratch would take a lot of time and might not be super
effective—7,000 images isn’t a lot when it comes to deep learning. What we’ll do
instead is take a pretrained network minus the top layers and build on top of that.
The intuition here is that the bottom layers of the pretrained layer recognize features
in the images that the layers that we provide can use to learn how to distinguish these
pets from each other.

Let’s load the Inception model, minus the top layers, and freeze the weights. Freezing
the weights means that they are no longer changed during training:

base_model = InceptionV3(weights='imagenet', include_top=False)
for layer in base_model.layers:
 layer.trainable = False

Now let’s add some trainable layers on top. With one fully connected layer in
between, we ask the model to predict our animal pet classes:

pool_2d = GlobalAveragePooling2D(name='pool_2d')(base_model.output)
dense = Dense(1024, name='dense', activation='relu')(pool_2d)
predictions = Dense(len(idx_to_labels), activation='softmax')(dense)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['accuracy'])

Let’s load up the data from the unpacked tar.gz provided by the Oxford-IIIT Pet Data‐
set. The filenames are of the format <class_name>_<idx>.jpg, so we can split off the
<class_name> while updating the label_to_idx and idx_to_label tables:

122 | Chapter 9: Reusing a Pretrained Image Recognition Network

pet_images_fn = [fn for fn in os.listdir('pet_images') if fn.endswith('.jpg')]
labels = []
idx_to_labels = []
label_to_idx = {}
for fn in pet_images_fn:
 label, _ = fn.rsplit('_', 1)
 if not label in label_to_idx:
 label_to_idx[label] = len(idx_to_labels)
 idx_to_labels.append(label)
 labels.append(label_to_idx[label])

Next, we convert the images into training data:

def fetch_pet(pet):
 img = image.load_img('pet_images/' + pet, target_size=(299, 299))
 return image.img_to_array(img)
img_vector = np.asarray([fetch_pet(pet) for pet in pet_images_fn])

And set up the labels as one-hot encoded vectors:

y = np.zeros((len(labels), len(idx_to_labels)))
for idx, label in enumerate(labels):
 y[idx][label] = 1

Training the model for 15 epochs produces decent results with over 90% precision:

model.fit(
 img_vector, y,
 batch_size=128,
 epochs=30,
 verbose=2
)

What we’ve done so far is called transfer learning. We can do a bit better by unfreezing
the top layers of the pretrained network to give it some more leeway to train. mixed9
is a layer in the network about two-thirds of the way up:

unfreeze = False
for layer in base_model.layers:
 if unfreeze:
 layer.trainable = True
 if layer.name == 'mixed9':
 unfreeze = True
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),
 loss='categorical_crossentropy', metrics=['accuracy'])

We can continue training:

model.fit(
 img_vector, y,
 batch_size=128,
 epochs=15,
 verbose=2
)

9.7 Retraining Image Recognition Networks | 123

And we should see that performance improves even more, up to 98%!

Discussion
Transfer learning is a key concept in deep learning. The world’s leaders in machine
learning often publish the architectures of their top-performing networks, which
makes for a good start if we want to reproduce their results, but we don’t always have
easy access to the training data they used to get those results. And even if we do have
access, training these world-class networks takes a lot of computing resources.

Having access to the actual trained networks is extremely useful if we want to do the
same things the networks were trained for, but using transfer learning also can help
us a lot when we want to perform similar tasks. Keras ships with a variety of models,
but if they don’t suffice, we can adapt models built for different frameworks.

124 | Chapter 9: Reusing a Pretrained Image Recognition Network

CHAPTER 10

Building an Inverse Image Search Service

In the previous chapter we saw how to use a pretrained network on our own images,
first by running a classifier on top of the network and then in a more complex exam‐
ple in which we trained only part of a network to recognize new classes of images. In
this chapter we will use a similar approach to build a reverse image search engine, or
a search by example.

We’ll start by looking at how we can acquire a good base set of images from Wikipe‐
dia by querying Wikidata. We’ll then use a pretrained network to extract values for
each of those images to get embeddings. Once we have those embeddings, finding
similar images is a mere matter of nearest neighbor search. Finally, we’ll look at prin‐
cipal components analysis (PCA) as a way to visualize relationships between images.

The code for this chapter can be found in the following notebook:

10.1 Building an inverse image search service

10.1 Acquiring Images from Wikipedia
Problem
How do you get a clean set of images from Wikipedia covering the major categories
of things?

Solution
Use Wikidata’s metainformation to find Wikipedia pages that represent a class of
things.

Wikipedia contains a great number of pictures that can be used for most purposes.
The vast majority of those pictures, though, represent concrete instances, which is

125

not really what we need for a reverse search engine. We want to return a picture rep‐
resentative of a cat as a species, not a specific cat like Garfield.

Wikidata, the structured cousin of Wikipedia, is based around triplets of the form
(subject, relation, object) and has a great number of predicates encoded, partly on top
of Wikipedia. One of those “instance of ” is represented by P31. What we are after is a
list of images of the objects in the instance-of relationships. We can use the Wikidata
query language to ask for this:

query = """SELECT DISTINCT ?pic
WHERE
{
 ?item wdt:P31 ?class .
 ?class wdt:P18 ?pic
}
"""

We can call the query backend of Wikidata using requests and unroll the resulting
JSON into a list of image references:

url = 'https://query.wikidata.org/bigdata/namespace/wdq/sparql'
data = requests.get(url, params={'query': query, 'format': 'json'}).json()
images = [x['pic']['value'] for x in data['results']['bindings']]

The references returned are URLs to the image pages, not the images themselves.
Images in the various wiki projects are supposed to be stored in http://upload.wikime‐
dia.org/wikipedia/commons/, but unfortunately this isn’t always the case yet—some
are still stored in the folder for a specific language. So, we’ll also have to check at least
the English folder (en). The actual URL for the image is determined by the filename
and the first two characters of the hexdigest of the MD5 hash of the file name. Cach‐
ing the image locally helps if we have to do this multiple times:

def center_crop_resize(img, new_size):
 w, h = img.size
 s = min(w, h)
 y = (h - s) // 2
 x = (w - s) // 2
 img = img.crop((x, y, s, s))
 return img.resize((new_size, new_size))

def fetch_image(image_cache, image_url):
 image_name = image_url.rsplit('/', 1)[-1]
 local_name = image_name.rsplit('.', 1)[0] + '.jpg'
 local_path = os.path.join(image_cache, local_name)
 if os.path.isfile(local_path):
 img = Image.open(local_path)
 img.load()
 return center_crop_resize(img, 299)
 image_name = unquote(image_name).replace(' ', '_')
 m = md5()
 m.update(image_name.encode('utf8'))

126 | Chapter 10: Building an Inverse Image Search Service

 c = m.hexdigest()
 for prefix in ('http://upload.wikimedia.org/wikipedia/en',
 'http://upload.wikimedia.org/wikipedia/commons'):
 url = '/'.join((prefix, c[0], c[0:2], image_name))
 r = requests.get(url)
 if r.status_code != 404:
 try:
 img = Image.open(BytesIO(r.content))
 if img.mode != 'RGB':
 img = img.convert('RGB')
 img.save(local_path)
 return center_crop_resize(img, 299)
 except IOError:
 pass
 return None

Even this doesn’t always seem to work. The notebook for this chapter contains some
more corner case–handling code to increase the yield of images.

Now all we need to do is fetch the images. This can take a long time, so we use tqdm
to show our progress:

valid_images = []
for image_name in tqdm(images):
 img = fetch_image(IMAGE_DIR, image_name)
 if img:
 valid_images.append(img)

Discussion
Wikidata’s query language is not widely known, but it’s an effective way to access
structured data. The example here is quite straightforward, but online you can find
more complex queries, for example, to return the largest cities in the world with a
female mayor or the most popular surnames for fictional characters. A lot of this data
can also be extracted from Wikipedia, but running a Wikidata query is usually faster,
more precise, and more fun.

The Wikimedia universe is also a good source for images. There are tens of millions
of images available, all with a friendly reuse license. Moreover, using Wikidata we can
get access to all kinds of properties for these images. It would be easy to expand this
recipe to return not just the image URLs, but also the names of the objects in the
images in a language of our choice.

The fetch_image function described here works most of the time,
but not always. We can improve upon this by fetching the contents
of the URL returned from the Wikidata query and extracting the
 tag from the HTML code.

10.1 Acquiring Images from Wikipedia | 127

10.2 Projecting Images into an N-Dimensional Space
Problem
Given a set of images, how do you organize them such that images that look similar
are near each other?

Solution
Treat the weights of the last-but-one layer of an image recognition net as image
embeddings. This layer is connected directly to the softmax layer that draws the con‐
clusions. Anything that the network thinks is a cat should therefore have similar val‐
ues.

Let’s load and instantiate the pretrained network. We’ll use Inception again—let’s
peek at its structure using .summary():

base_model = InceptionV3(weights='imagenet', include_top=True)
base_model.summary()

As you can see, we need the avg_pool layer, which has a size of 2,048:

model = Model(inputs=base_model.input,
 outputs=base_model.get_layer('avg_pool').output)

Now we can run the model on an image or a set of images:

def get_vector(img):
 if not type(img) == list:
 images = [img]
 else:
 images = img
 target_size = int(max(model.input.shape[1:]))
 images = [img.resize((target_size, target_size), Image.ANTIALIAS)
 for img in images]
 np_imgs = [image.img_to_array(img) for img in images]
 pre_processed = preprocess_input(np.asarray(np_imgs))
 return model.predict(pre_processed)

and index the images we acquired in the previous recipe in chunks (of course, if you
have enough memory, you can try to do the entire shot in one go):

chunks = [get_vector(valid_images[i:i+256])
 for i in range(0, len(valid_images), 256)]
vectors = np.concatenate(chunks)

Discussion
In this recipe we used the last-but-one layer of the network to extract the embed‐
dings. Since this layer is directly connected to the softmax layer that determines the

128 | Chapter 10: Building an Inverse Image Search Service

actual output layers, we expect the weights to form a semantic space that puts all the
cat images in roughly the same space. But what happens if we pick a different layer?

One way to think about convolutional networks that do image recognition is to treat
the successive layers as feature detectors of increasing levels of abstraction. The low‐
est level works directly on the pixel values and will detect very local patterns. The last
layer detects concepts like “catness.”

Picking a lower layer should result in similarity on a lower level of abstractness, so
instead of returning things that are cat-like, we would expect to see images that have
similar textures.

10.3 Finding Nearest Neighbors in High-Dimensional
Spaces
Problem
How do you find the points that are closest to each other in a high-dimensional
space?

Solution
Use scikit-learn’s k-nearest neighbors implementation.

The k-nearest neighbors algorithm builds a model that can quickly return nearest
neighbors. It does so with some loss of accuracy, but is much faster than doing the
precise calculations. Effectively, it builds a distance index on our vectors:

nbrs = NearestNeighbors(n_neighbors=10,
 balgorithm='ball_tree').fit(vectors)

With this distance index we can now quickly return near matches from our set of
images given an input image. We have arrived at our reverse image search implemen‐
tation! Let’s put it all together to find more cats:

cat = get_vector(Image.open('data/cat.jpg'))
distances, indices = nbrs.kneighbors(cat)

And display the top results using inline HTML images:

html = []
for idx, dist in zip(indices[0], distances[0]):
 b = BytesIO()
 valid_images[idx].save(b, format='jpeg')
 b64_img = base64.b64encode(b.getvalue()).decode('utf-8'))
 html.append("".format(b64_img)
HTML(''.join(html))

You should see a nice list of images dominated by cats!

10.3 Finding Nearest Neighbors in High-Dimensional Spaces | 129

Discussion
Fast computation of nearest neighbors is an active area of research in machine learn‐
ing. The most naive neighbor search implementation involves the brute-force com‐
putation of distances between all pairs of points in the dataset, which quickly gets out
of hand if we have a large number of points in a high-dimensional space.

Scikit-learn provides us with a number of algorithms that precalculate a tree that can
help us find nearest neighbors fast, at the cost of some memory. The different
approaches are discussed in the documentation, but the general approach is to use an
algorithm to recursively split the space into subspaces, this way building a tree. This
allows us to quickly identify which subspaces to check when looking for neighbors.

10.4 Exploring Local Neighborhoods in Embeddings
Problem
You’d like to explore what local clusters of images look like.

Solution
Use principal component analysis to find the dimensions among a local set of images
that discriminate the most between images.

For example, let’s say we have the 64 images that are the closest match to our cat
image:

nbrs64 = NearestNeighbors(n_neighbors=64, algorithm='ball_tree').fit(vectors)
distances64, indices64 = nbrs64.kneighbors(cat)

PCA allows us to reduce the dimensionality of a space in such a way that the original
space can be constructed with as little loss as possible. If we reduce the dimensional‐
ity to two, PCA will find the plane that the examples provided can be projected upon
with as little loss as possible. If we then look at where the examples landed on that
plane, we get a good idea of the structure of the local neighborhood. TruncatedSVD is
the implementation we’ll use in this case:

vectors64 = np.asarray([vectors[idx] for idx in indices64[0]])
svd = TruncatedSVD(n_components=2)
vectors64_transformed = svd.fit_transform(vectors64)

vectors64_transformed now has a shape of 64×2. We are going to draw the 64
images on an 8×8 grid with a cell size of 75×75. Let’s start by normalizing the coordi‐
nates onto a 0 to 1 scale:

mins = np.min(vectors64_transformed, axis=0)
maxs = np.max(vectors64_transformed, axis=0)
xys = (vectors64_transformed - mins) / (maxs - mins)

130 | Chapter 10: Building an Inverse Image Search Service

http://scikit-learn.org/stable/modules/neighbors.html

Now we can draw and display the local area:

img64 = Image.new('RGB', (8 * 75, 8 * 75), (180, 180, 180))

for idx, (x, y) in zip(indices64[0], xys):
 x = int(x * 7) * 75
 y = int(y * 7) * 75
 img64.paste(valid_images[idx].resize((75, 75)), (x, y))

img64

We see a cat image roughly in the middle, with one corner dominated by animals and
the rest of the images matched because of other reasons. Note that we plot over exist‐
ing images, so the grid won’t actually be filled completely.

Discussion
In Recipe 3.3 we used t-SNE to fold a higher-dimensional space into a two-
dimensional plane. In this recipe we used principal component analysis instead. The
two algorithms accomplish the same thing, reducing the dimensions of a space, but
do so in different ways.

10.4 Exploring Local Neighborhoods in Embeddings | 131

t-SNE tries to keep the distances between points in the space the same, despite the
reduction of dimensionality. Some information is of course lost in this transforma‐
tion, so we can make a choice as to whether we want to try to keep clusters locally
intact (distances between points that were close to each other in the higher dimen‐
sions are kept similar) or keep distances between clusters intact (distances between
points that were far from each other in the higher dimensions are kept similar).

PCA tries to find an N-dimensional hyperplane that is the closest possible to all the
items in the space. If N is 2, we’re talking about a normal plane, and so it tries to find
the plane in our high-dimensional space that is closest to all images. In other words,
it captures the two most important dimensions (the principal components), which we
then use to visualize the cat space.

132 | Chapter 10: Building an Inverse Image Search Service

CHAPTER 11

Detecting Multiple Images

In the previous chapters we saw how we can work with pretrained classifiers to detect
images and learn new categories. In all those experiments, though, we always
assumed there was only one thing to see in our images. In the real world this is not
always the case—we might have an image with both a cat and a dog, for example.

This chapter explores some techniques to overcome this limitation. We start out with
building on a pretrained classifier and modifying the setup in such a way that we get
multiple answers. We then look at a state-of-the art solution to solving this problem.

This is an area of active research, and the most advanced algorithms are tricky to
reproduce inside a Python notebook on top of Keras. Instead, we use an open source
library in the second and third recipes of this chapter to demonstrate what is possible.

The code for this chapter can be found in the following notebook:

11.1 Detecting Multiple Images

11.1 Detecting Multiple Images Using a Pretrained
Classifier
Problem
How do you find multiple image classes in a single image?

Solution
Use the outputs of the middle layers as a feature map and run a sliding window over
them.

133

Using a pretrained neural network to do image classifying is not very difficult once
we have everything set up. If there are multiple objects to detect in the image, we
don’t do so well though: the pretrained network will return the likelihood that the
image represents any of the classes. If it sees two different objects, it might split the
score returned. It will also split the score if it sees one object but isn’t sure whether it
is one of two classes.

One idea is to run a sliding window over the image. Rather than downsampling the
image to 224×224, we downsample it to 448×448, double the original. We then feed
all the different crops that we can get out of the larger image:

Let’s create the crops from the larger image:

cat_dog2 = preprocess_image('data/cat_dog.jpg', target_size=(448, 448))
crops = []
for x in range(7):
 for y in range(7):
 crops.append(cat_dog2[0,
 x * 32: x * 32 + 224,
 y * 32: y * 32 + 224,
 :])
crops = np.asarray(crops)

Classifiers run over batches, so we can feed the crops object into the classifier that
we’ve loaded before in the same fashion:

134 | Chapter 11: Detecting Multiple Images

preds = base_model.predict(vgg16.preprocess_input(crops))
l = defaultdict(list)
for idx, pred in enumerate(vgg16.decode_predictions(preds, top=1)):
 _, label, weight = pred[0]
 l[label].append((idx, weight))
l.keys()

dict_keys(['Norwegian_elkhound', 'Egyptian_cat', 'standard_schnauzer',
 'kuvasz', 'flat-coated_retriever', 'tabby', 'tiger_cat',
 'Labrador_retriever'])

The classifier mostly seems to think that the various tiles are either cats or dogs, but
isn’t really sure what type. Let’s take a look at the crops that have the highest value for
a given tag:

def best_image_for_label(l, label):
 idx = max(l[label], key=lambda t:t[1])[0]
 return deprocess_image(crops[idx], 224, 224)

showarray(best_image_for_label(crop_scores, 'Egyptian_cat'))

showarray(best_image_for_label(crop_scores, 'Labrador_retriever'))

This approach works, but is rather expensive. And we duplicate a lot of work.
Remember that the way a CNN works is by way of running a convolution over the
image, which is very similar to doing all those crops. Moreover, if we load a pre‐
trained network without its top layers, it can run on an image of any size:

11.1 Detecting Multiple Images Using a Pretrained Classifier | 135

bottom_model = vgg16.VGG16(weights='imagenet', include_top=False)

(1, 14, 14, 512)

The top layer of the network expects an input of 7×7×512. We can recreate the top
layer of the network based on the network we already loaded and copy the weights:

def top_model(base_model):
 inputs = Input(shape=(7, 7, 512), name='input')
 flatten = Flatten(name='flatten')(inputs)
 fc1 = Dense(4096, activation='relu', name='fc1')(flatten)
 fc2 = Dense(4096, activation='relu', name='fc2')(fc1)
 predictions = Dense(1000, activation='softmax',
 name='predictions')(fc2)
 model = Model(inputs,predictions, name='top_model')
 for layer in model.layers:
 if layer.name != 'input':
 print(layer.name)
 layer.set_weights(
 base_model.get_layer(layer.name).get_weights())
 return model

model = top_model(base_model)

Now we can do the cropping based on the output of the bottom model and feed that
into the top model, which means we only run the bottom model on 4 times the pixels
of the original image, rather than 64 times as we did before. First, let’s run the image
through the bottom model:

bottom_out = bottom_model.predict(cat_dog2)

Now, we’ll create the crops of the output:

vec_crops = []
for x in range(7):
 for y in range(7):
 vec_crops.append(bottom_out[0, x: x + 7, y: y + 7, :])
vec_crops = np.asarray(vec_crops)

And run the top classifier:

crop_pred = top_model.predict(vec_crops)
l = defaultdict(list)
for idx, pred in enumerate(vgg16.decode_predictions(crop_pred, top=1)):
 _, label, weight = pred[0]
 l[label].append((idx, weight))
l.keys()

This should give us the same results as before, but much faster!

Discussion
In this recipe we’ve taken advantage of the fact that the lower layers of a neural net‐
work have spatial information about what the network sees, even though this infor‐

136 | Chapter 11: Detecting Multiple Images

mation is discarded at prediction time. This trick is based on some of the work done
around Faster RCNN (see the next recipe), but doesn’t require the expensive training
step.

The fact that our pretrained classifier works on images with a fixed size (224×224 pix‐
els, in this case) somewhat limits the approach here. The output regions always have
the same size, and we have to decide into how many cells we split the original image.
However, it does work well to find interesting subimages and is easy to deploy.

Faster RNN itself doesn’t have the same drawbacks, but is much more costly to train.
We’ll take a look at this in the next recipe.

11.2 Using Faster RCNN for Object Detection
Problem
How do you find multiple objects in an image with tight bounding boxes?

Solution
Use a (pretrained) Faster RCNN network.

Faster RCNN is a neural network solution for finding bounding boxes of objects in
an image. Unfortunately, the algorithm is too complex to easily reproduce in a
Python notebook; instead, we’ll rely on an open source implementation and treat that
code more or less as a black box. Let’s clone it from GitHub:

git clone https://github.com/yhenon/keras-frcnn.git

After we’ve installed the dependencies from requirements.txt, we can train the net‐
work. We can either train it using our own data or on the standard dataset from the
Visual Object Challenge. The latter contains many images with bounding boxes and
20 classes.

After we’ve downloaded the VOC 2007/2012 dataset and unpacked it, we can start
training with:

python train_frcnn.py -p <downloaded-data-set>

This takes quite a long time—about a day on a serious GPU, and
much longer on just CPUs. If you’d prefer to skip this step, there’s a
pretrained network available at https://storage.googleapis.com/deep-
learning-cookbook/model_frcnn.hdf5.

The training script saves the weights of the model every time it sees an improvement.
Instantiation of the model for testing purposes is somewhat complex:

11.2 Using Faster RCNN for Object Detection | 137

http://host.robots.ox.ac.uk/pascal/VOC/
https://storage.googleapis.com/deep-learning-cookbook/model_frcnn.hdf5
https://storage.googleapis.com/deep-learning-cookbook/model_frcnn.hdf5

img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(c.num_rois, 4))
feature_map_input = Input(shape=input_shape_features)

shared_layers = nn.nn_base(img_input, trainable=True)

num_anchors = len(c.anchor_box_scales) * len(c.anchor_box_ratios)
rpn_layers = nn.rpn(shared_layers, num_anchors)

classifier = nn.classifier(feature_map_input,
 roi_input,
 c.num_rois,
 nb_classes=len(c.class_mapping),
 trainable=True)

model_rpn = Model(img_input, rpn_layers)
model_classifier_only = Model([feature_map_input, roi_input], classifier)

model_classifier = Model([feature_map_input, roi_input], classifier)

We now have two models, one that is able to suggest regions that might have some‐
thing interesting going on and the other able to tell us what it is. Let’s load the weights
of the models and compile:

model_rpn.load_weights('data/model_frcnn.hdf5', by_name=True)
model_classifier.load_weights('data/model_frcnn.hdf5', by_name=True)

model_rpn.compile(optimizer='sgd', loss='mse')
model_classifier.compile(optimizer='sgd', loss='mse')

Now let’s feed our image into the region suggester model. We’ll reshape the output in
a way that will make it easier to run the next step. After this, r2 is a three-dimensional
structure with the last dimension holding the predictions:

img_vec, ratio = format_img(cv2.imread('data/cat_dog.jpg'), c)
y1, y2, f = model_rpn.predict(img_vec)
r = keras_frcnn.roi_helpers.rpn_to_roi(y1, y2, c, K.image_dim_ordering(),
 overlap_thresh=0.7)
roi_count = R.shape[0] // c.num_rois
r2 = np.zeros((roi_count * c.num_rois, r.shape[1]))
r2 = r[:r2.shape[0],:r2.shape[1]]
r2 = np.reshape(r2, (roi_count, c.num_rois, r.shape[1]))

The image classifier runs over one-dimensional batches, so we have to feed in the two
dimensions of r2 one by one. p_cls will contain the detected classes and p_regr fine-
tuning information for the boxes:

p_cls = []
p_regr = []
for i in range(r2.shape[0]):
 pred = model_classifier_only.predict([F, r2[i: i + 1]])
 p_cls.append(pred[0][0])
 p_regr.append(pred[1][0])

138 | Chapter 11: Detecting Multiple Images

Putting the three arrays together to get the actual boxes, labels, and certainty is a mat‐
ter of looping through the two dimensions:

boxes = []
w, h, _ = r2.shape
for x in range(w):
 for y in range(h):
 cls_idx = np.argmax(p_cls[x][y])
 if cls_idx == len(idx_to_class) - 1:
 continue
 reg = p_regr[x, y, 4 * cls_idx:4 * (cls_idx + 1)]
 params = list(r2[x][y])
 params += list(reg / c.classifier_regr_std)
 box = keras_frcnn.roi_helpers.apply_regr(*params)
 box = list(map(lambda i: i * c.rpn_stride, box))
 boxes.append((idx_to_class[cls_idx], p_cls[x][y][cls_idx], box))

The list boxes now contains the detected cats and dogs. There are a lot of overlapping
rectangles that can be resolved into each other.

Discussion
The Faster RCNN algorithm is an evolution of the Fast RCNN algorithm, which in
turn was an improvement on the original RCNN. All these algorithms work similarly;
a region proposer comes up with possible rectangles that might contain interesting
images and the image classifier then detects what—if anything—can be seen there.
The approach is not so different from what we did in the previous recipe, where our
region proposer just produced 64 subcrops of an image.

Jian Sun, who came up with Faster RCNN, quite cleverly observed that the CNN that
produces the feature map we used in the previous recipe could also be a good source
for region proposals. So instead of treating the problem of region proposing sepa‐
rately, Faster RCNN trains the region proposal in parallel on the same feature map on
which the image classification is done.

You can read more about the evolution of RCNN to Faster RCNN and how these
algorithms work in the Athelas blog post “A Brief History of CNNs in Image Segmen‐
tation: From R-CNN to Mask-CNN.”

11.3 Running Faster RCNN over Our Own Images
Problem
You’d like to train a Faster RCNN model, but don’t want to have to start from scratch.

Solution
Start training from a pretrained model.

11.3 Running Faster RCNN over Our Own Images | 139

https://bit.ly/2oUCh88
https://bit.ly/2oUCh88

Training from scratch requires a lot of labeled data. The VOC dataset contains more
than 20,000 labeled images for 20 classes. So what do we do if we don’t have that
much labeled data? We can use the transfer learning trick we came across first in
Chapter 9.

The training script already loads weights if it is restarted; what we need to do is con‐
vert the weights from the network trained on the VOC dataset to our own. In the pre‐
vious recipe we constructed a dual network and loaded weights. As long as our new
task is similar to the VOC classification task, all we need to do is change the number
of classes, write back the weights, and start training.

The easiest way to do this is to let the training script run just long enough for it to
write its configuration file and then use that configuration file and the previously
loaded model to get to these weights. For training our own data, it is best to use the
comma-separated format described on GitHub with the format:

filepath,x1,y1,x2,y2,class_name

Here, filepath should be the full path to the image and x1, y1, x2, and y2 form the
bounding box in pixels on that image. We can now train the model with:

python train_frcnn.py -o simple -p my_data.txt \
 --config_filename=newconfig.pickle

Now, after we’ve loaded the pretrained model as before, we can load the new configu‐
ration file with:

new_config = pickle.load(open('data/config.pickle', 'rb'))
Now construct the model for training and load the weights:

img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(None, 4))
shared_layers = nn.nn_base(img_input, trainable=True)

num_anchors = len(c.anchor_box_scales) * len(c.anchor_box_ratios)
rpn = nn.rpn(shared_layers, num_anchors)

classifier = nn.classifier(shared_layers, roi_input, c.num_rois,
 len(c.class_mapping), trainable=True)

model_rpn = Model(img_input, rpn[:2])
model_classifier = Model([img_input, roi_input], classifier)
model_all = Model([img_input, roi_input], rpn[:2] + classifier)

model_rpn.load_weights('data/model_frcnn.hdf5', by_name=True)
model_classifier.load_weights('data/model_frcnn.hdf5', by_name=True)

We can see that the training model only depends on the number of classes for the
classifier object. So, we want to reconstruct the classifier object and any object that
depend on it, then save the weights. That way we’ve constructed our new model based
on the old weights. If we peek into the code that constructs the classifier, we see that it

140 | Chapter 11: Detecting Multiple Images

all depends on the third-to-last layer. So let’s copy that code, but run it using the
new_config:

new_nb_classes = len(new_config.class_mapping)
out = model_classifier_only.layers[-3].output
new_out_class = TimeDistributed(Dense(new_nb_classes,
 activation='softmax', kernel_initializer='zero'),
 name='dense_class_{}'.format(new_nb_classes))(out)
new_out_regr = TimeDistributed(Dense(4 * (new_nb_classes-1),
 activation='linear', kernel_initializer='zero'),
 name='dense_regress_{}'.format(new_nb_classes))(out)
new_classifer = [new_out_class, new_out_regr]

With the new classifier in hand, we can construct the model as before and save the
weights. These weights will retain what the model learned before, but have zeros for
the classifier bit that is specific to the new training task:

new_model_classifier = Model([img_input, roi_input], classifier)
new_model_rpn = Model(img_input, rpn[:2])
new_model_all = Model([img_input, roi_input], rpn[:2] + classifier)
new_model_all.save_weights('data/model_frcnn_new.hdf5')

We can now continue training with:

python train_frcnn.py -o simple -p my_data.txt \
 --config_filename=newconfig.pickle \
 --input_weight_path=data/model_frcnn_new.hdf5

Discussion
Most examples of transfer learning are based on image recognition networks. This is
partly because of the easy availability of pretrained networks and the fact that getting
a training set of labeled images is straightforward. In this recipe we saw that we can
apply this technique in other situations too. All we need is a pretrained network and
an insight into how the network is constructed. By loading up the network weights,
modifying the network for the new dataset, and saving the weights again, we can
increase the speed of learning dramatically.

Even in situations where we don’t have a pretrained network available, but where
there is a large set of public training data available and our own dataset is small, it
might make sense to first train on the public dataset and then transfer that learning to
our own set. For the bounding box case discussed in this recipe, this could easily be
the case.

If your own dataset is small, it might make sense to experiment
with setting part of the network to untrainable as we did in Recipe
9.7.

11.3 Running Faster RCNN over Our Own Images | 141

CHAPTER 12

Image Style

In this chapter we’ll explore some techniques to visualize what convolutional net‐
works see when they classify images. We’ll do this by running the networks in reverse
—rather than giving the network an image and asking it what it is, we tell the net‐
work what to see and ask it to modify the image in a way that makes it see the detec‐
ted item more exaggeratedly.

We’ll start by doing this for a single neuron. This will show us what sorts of patterns
that neuron reacts to. We’ll then expand on this by introducing the concept of
octaves, where we zoom in while we optimize the image to get more detail. Finally, we
will look at applying this technique to existing images and visualize what the network
“almost” sees in an image, a technique known as deep dreaming.

We’ll then switch gears and look at how combinations of “lower” layers of a network
determine the artistic style of an image and how we can visualize just the style of an
image. This uses the concept of gram matrices and how they represent the style of a
painting.

Next, we look at how we can combine this notion with a way to stabilize an image,
which allows us to generate an image that only copies the style of an image. We then
move on to apply this technique to existing images, which makes it possible to render
a recent photograph in the style of Vincent van Gogh’s Starry Skies. Finally, we’ll use
two style images and render versions of the same picture somewhere between the two
styles.

The following notebooks contain the code for this chapter:

12.1 Activation Optimization
12.2 Neural Style

143

12.1 Visualizing CNN Activations
Problem
You’d like to see what is actually happening inside the image recognition network.

Solution
Maximize the activation of a neuron to see which pixels it reacts to most strongly.

In the previous chapter we saw that convolutional neural networks are the networks
of choice when it comes to image recognition. The lowest layers work directly on the
pixels of the image, and as we go up in the stack of layers we speculate that the
abstraction level of the features recognized goes up. The final layers are capable of
actually recognizing things in the image.

This makes intuitive sense. These networks are designed this way analogously to how
we think the human visual cortex works. Let’s take a look at what the individual neu‐
rons are doing to see if this is actually the case. We’ll start by loading the network up
as before. We use the VGG16 here because of its simpler architecture:

model = vgg16.VGG16(weights='imagenet', include_top=False)
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])

We’ll now run the network backwards. That is, we’ll define a loss function that opti‐
mizes the activation for one specific neuron and then ask the network to calculate in
what direction to change an image to optimize the value for that neuron. In this case
we randomly pick the layer block3_conv and the neuron at index 1:

input_img = model.input
neuron_index = 1
layer_output = layer_dict['block3_conv1'].output
loss = K.mean(layer_output[:, neuron_index, :, :])

To run the network backwards, we need to define a Keras function called iterate. It
will take an image and return the loss and the gradient (the changes we need to make
to the network). We also need to normalize the gradient:

grads = K.gradients(loss, input_img)[0]
grads = normalize(grads)
iterate = K.function([input_img], [loss, grads])

We’ll start with a random noise image and feed it repeatedly into the iterate func‐
tion we just defined, and then add the returned gradient to our image. This changes
the image step by step in the direction where the neuron and layer we picked will
have a maximum activation—20 steps should do the trick:

144 | Chapter 12: Image Style

for i in range(20):
 loss_value, grads_value = iterate([input_img_data])
 input_img_data += grads_value * step

Before we can display the resulting image, it needs normalization and clipping of the
values to the usual RGB range:

def visstd(a, s=0.1):
 a = (a - a.mean()) / max(a.std(), 1e-4) * s + 0.5
 return np.uint8(np.clip(a, 0, 1) * 255)

Once we have done that, we can display the image:

This is cool. It gives us a glimpse of what the network is doing at this particular level.
The overall network, though, has millions of neurons; inspecting them one by one is
not a very scalable strategy to get an insight into what is going on.

A good way to get an impression is to pick some layers of increasing abstraction:

layers = ['block%d_conv%d' % (i, (i + 1) // 2) for i in range(1, 6)]

For each of those layers we’ll find eight representative neurons and add them to a
grid:

grid = []
layers = [layer_dict['block%d_conv%d' % (i, (i + 1) // 2)]
 for i in range(1, 6)]
for layer in layers:
 row = []
 neurons = random.sample(range(max(x or 0
 for x in layers[0].output_shape)
 for neuron in tqdm(neurons), sample_size), desc=layer.name):
 loss = K.mean(layer.output[:, neuron, :, :])
 grads = normalize(K.gradients(loss, input_img)[0])
 iterate = K.function([input_img], [loss, grads])
 img_data = np.random.uniform(size=(1, 3, 128, 128, 3)) + 128.
 for i in range(20):
 loss_value, grads_value = iterate([img_data])
 img_data += grads_value

12.1 Visualizing CNN Activations | 145

 row.append((loss_value, img_data[0]))
 grid.append([cell[1] for cell in
 islice(sorted(row, key=lambda t: -t[0]), 10)])

Converting the grid and displaying it in the notebook is similar to what we did in
Recipe 3.3:

img_grid = PIL.Image.new('RGB',
 (8 * 100 + 4, len(layers) * 100 + 4), (180, 180, 180))
for y in range(len(layers)):
 for x in range(8):
 sub = PIL.Image.fromarray(
 visstd(grid[y][x])).crop((16, 16, 112, 112))
 img_grid.paste(sub,
 (x * 100 + 4, (y * 100) + 4))
display(img_grid)

Discussion
Maximizing the activation of a neuron in a neural network is a good way to visualize
the function of that neuron in the overall task of the network. By sampling neurons
from different layers we can even visualize the increasing complexity of the features
that the neurons detect as we go up in the stack.

The results we see contain mostly small patterns. The way that we update the pixels
makes it hard for larger objects to emerge, since a group of pixels has to move in uni‐
son and they all are optimized against their local contents. This means that it is
harder for the more abstract layers to “get what they want” since the patterns that they
recognize are of a larger size. We can see this in the grid image we generated. In the
next recipe we’ll explore a technique to help with this.

146 | Chapter 12: Image Style

You might wonder why we only try to activate neurons in low and middle layers.
Why not try to activate the final predictions layer? We could find the prediction for
“cat” and tell the network to activate that, and we’d expect to end up with a picture of
a cat.

Sadly, this doesn’t work. It turns out that the universe of all images that a network will
classify as a “cat” is staggeringly large, but only very few of those images would be
recognizable to us as cats. So, the resulting image almost always looks like noise to us,
but the network thinks it is a cat.

In Chapter 13 we’ll look at some techniques to generate more realistic images.

12.2 Octaves and Scaling
Problem
How do you visualize larger structures that activate a neuron?

Solution
Zoom in while optimizing the image for maximum neuron activation.

In the previous step we saw that we can create images that maximize the activation of
a neuron, but the patterns remain rather local. An interesting way to get around this
is to start with a small image and then do a series of steps where we optimize it using
the algorithm from the previous recipe followed by an enlargement of the image. This
allows the activation step to first set out the overall structure of the image before fill‐
ing in the details. Starting with a 64×64 image:

img_data = np.random.uniform(size=(1, 3, size, size)) + 128.

we can now do the zoom/optimize thing 20 times:

for octave in range(20):
 if octave>0:
 size = int(size * 1.1)
 img_data = resize_img(img_data, (size, size))
 for i in range(10):
 loss_value, grads_value = iterate([img_data])
 img_data += grads_value
 clear_output()
 showarray(visstd(img_data[0]))

12.2 Octaves and Scaling | 147

Using the block5_conv1 layer and neuron 4 gives a nice organic-looking result:

Discussion
Octaves and scaling are a great way to let a network produce images that somehow
represent what it can see.

There’s a lot to explore here. In the code in the Solution we only optimize the activa‐
tion for one neuron, but we can optimize multiple neurons at the same time for a
more mixed picture. We can assign different weights to them or even negative
weights to some of them, forcing the network to stay away from certain activations.

The current algorithm sometimes produces too many high frequencies, especially in
the first octaves. We can counteract this by applying a Gaussian blur to the first
octaves to produce a less sharp result.

And why stop resizing when the image has reached our target size? Instead we could
continue resizing, but also crop the image to keep it the same size. This would create
a video sequence where we keep zooming while new patterns unfold.

Once we’re making movies, we could also change the set of neurons that we activate
and explore the network that way. The movie_dream.py script combines some of
these ideas and produces mesmerizing movies, an example of which you can find on
YouTube.

148 | Chapter 12: Image Style

https://youtu.be/rubLdCdfDSk

12.3 Visualizing What a Neural Network Almost Sees
Problem
Can you exaggerate what a network detects, to get a better idea of what it’s seeing?

Solution
Expand the code from the previous recipe to operate on existing images.

There are two things we need to change to make the existing algorithm work. First,
upscaling an existing image would make it rather blocky. Second, we want to keep
some similarity with the original image, as otherwise we might as well start out with a
random image. Fixing these two issues reproduces Google’s famous DeepDream
experiment, where eerie pictures appear out of skies and mountain landscapes.

We can achieve those two goals by keeping track of the loss of detail because of the
upscaling and injecting that lost detail back into the generated image; this way we
undo the scaling artifacts, plus we “steer” the image back to the original at every
octave. In the following code, we get all the shapes we want to go through and then
upscale the image step by step, optimize the image for our loss function, and then add
the lost detail by comparing what gets lost between upscaling and downscaling:

successive_shapes = [tuple(int(dim / (octave_scale ** i))
 for dim in original_shape)
 for i in range(num_octave - 1, -1, -1)]

original_img = np.copy(img)
shrunk_original_img = resize_img(img, successive_shapes[0])

for shape in successive_shapes:
 print('Processing image shape', shape)
 img = resize_img(img, shape)
 for i in range(20):
 loss_value, grads_value = iterate([img])
 img += grads_value
 upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape)
 same_size_original = resize_img(original_img, shape)
 lost_detail = same_size_original - upscaled_shrunk_original_img

 img += lost_detail
 shrunk_original_img = resize_img(original_img, shape)

12.3 Visualizing What a Neural Network Almost Sees | 149

This gives a pretty nice result:

The original Google algorithm for deep dreaming was slightly different, though.
What we just did was tell the network to optimize the image to maximize the activa‐
tion for a particular neuron. What Google did instead was to have the network exag‐
gerate what it already was seeing.

It turns out we can optimize the image to increase the current activations by adjusting
the loss function that we previously defined. Instead of taking into account one neu‐
ron, we are going to use entire layers. For this to work, we have to modify our loss
function such that it maximizes activations that are already high. We do this by taking
the sum of the squares of the activations.

Let’s start by specifying the three layers we want to optimize and their respective
weights:

settings = {
 'block3_pool': 0.1,
 'block4_pool': 1.2,
 'block5_pool': 1.5,
}

Now we define the loss as a sum of those, avoiding border artifacts by only involving
nonborder pixels in the loss:

loss = K.variable(0.)
for layer_name, coeff in settings.items():

150 | Chapter 12: Image Style

 x = layer_dict[layer_name].output
 scaling = K.prod(K.cast(K.shape(x), 'float32'))
 if K.image_data_format() == 'channels_first':
 loss += coeff * K.sum(K.square(x[:, :, 2: -2, 2: -2])) / scaling
 else:
 loss += coeff * K.sum(K.square(x[:, 2: -2, 2: -2, :])) / scaling

The iterate function remains the same, as does the function to generate the image.
The only change we make is that where we add the gradient to the image, we slow
down the speed by multiplying the grad_value by 0.1:

 for i in range(20):
 loss_value, grads_value = iterate([img])
 img += grads_value * 0.10

Running this code, we see eyes and something animal face–like appear in the land‐
scape:

You can play around with the layers, their weights, and the speed factor to get differ‐
ent images.

Discussion
Deep dreaming seems like a playful way to generate hallucinogenic images, and it cer‐
tainly allows for endless exploring and experimentation. But it is also a way to under‐
stand what neural networks see in an image. Ultimately this is a reflection on the

12.3 Visualizing What a Neural Network Almost Sees | 151

images that the networks were trained on: a network trained on cats and dogs will
“see” cats and dogs in an image of a cloud.

We can exploit this by using the techniques from Chapter 9. If we have a large set of
images that we use for retraining an existing network, but we set only one layer of
that network to trainable, the network has to put all its “prejudices” into that layer.
When we then run the deep dreaming step with that layer as the optimized layer,
those “prejudices” should be visualized quite nicely.

It is always tempting to draw parallels between how neural networks function and
how human brains work. Since we don’t really know a lot about the latter, this is of
course rather speculative. Still, in this case, the activation of certain neurons seems
close to brain experiments where a researcher artificially activates a bit of the human
brain by sticking an electrode in it and the subject experiences a certain image, smell,
or memory.

Similarly, humans have an ability to recognize faces and animals in the shapes of
clouds. Some mind-altering substances increase this ability. Maybe these substances
artificially increase the activation of neural layers in our brains?

12.4 Capturing the Style of an Image
Problem
How do you capture the style of an image?

Solution
Calculate the gram matrix of the convolutional layers of the image.

In the previous recipe we saw how we can visualize what a network has learned by
asking it to optimize an image such that it maximizes the activation of a specific neu‐
ron. The gram matrix of a layer captures the style of that layer, so if we start with an
image filled with random noise and optimize it such that the gram matrices of its lay‐
ers match the gram matrices of a target image, we’d expect it to start mimicking that
target image’s style.

The gram matrix is the flattened version of the activations, multi‐
plied by itself transposed.

We can then define a loss function between two sets of activations by subtracting the
gram matrices from each, squaring the results, and then summing it all up:

152 | Chapter 12: Image Style

def gram_matrix(x):
 if K.image_data_format() != 'channels_first':
 x = K.permute_dimensions(x, (2, 0, 1))
 features = K.batch_flatten(x)
 return K.dot(features, K.transpose(features))

def style_loss(layer_1, layer_2):
 gr1 = gram_matrix(layer_1)
 gr2 = gram_matrix(layer_1)
 return K.sum(K.square(gr1 - gr2))

As before, we want a pretrained network to do the work. We’ll use it on two images,
the image we are generating and the image that we want to capture the style from—in
this case Claude Monet’s Water Lilies from 1912. So, we’ll create an input tensor that
contains both and load a network without the final layers that takes this tensor as its
input. We’ll use VGG16 because it is simple, but any pretrained network would do:

style_image = K.variable(preprocess_image(style_image_path,
 target_size=(1024, 768)))
result_image = K.placeholder(style_image.shape)
input_tensor = K.concatenate([result_image,
 style_image], axis=0)

model = vgg16.VGG16(input_tensor=input_tensor,
 weights='imagenet', include_top=False)

Once we have the model loaded, we can define our loss variable. We’ll go through all
layers of the model, and for the ones that have _conv in their name (the convolutional
layers), collect the style_loss between the style_image and the result_image:

loss = K.variable(0.)
for layer in model.layers:
 if '_conv' in layer.name:
 output = layer.output
 loss += style_loss(output[0, :, :, :], output[1, :, :, :])

Now that we have a loss, we can start to optimize. We’ll use scipy’s fmin_l_bfgs_b
optimizer. That method needs a gradient and a loss value to do its job. We can get
them with one call, so we need to cache the values. We do this using a handy helper
class, Evaluator, that takes a loss and an image:

class Evaluator(object):
 def __init__(self, loss_total, result_image):
 grads = K.gradients(loss_total, result_image)
 outputs = [loss_total] + grads
 self.iterate = K.function([result_image], outputs)
 self.shape = result_image.shape

 self.loss_value = None
 self.grads_values = None

 def loss(self, x):

12.4 Capturing the Style of an Image | 153

 outs = self.iterate([x.reshape(self.shape)])
 self.loss_value = outs[0]
 self.grad_values = outs[-1].flatten().astype('float64')
 return self.loss_value

 def grads(self, x):
 return np.copy(self.grad_values)

We can now optimize an image by calling repeatedly:

image, min_val, _ = fmin_l_bfgs_b(evaluator.loss, image.flatten(),
 fprime=evaluator.grads, maxfun=20)

The resulting image starts looking quite reasonable after 50 steps or so.

Discussion
In this recipe we’ve seen that the gram matrix captures the style of an image effec‐
tively. Naively, we might think that the best way to match the style of an image would
be to match the activations of all layers directly. But that approach is too literal.

It might not be obvious that the gram matrix approach would work better. The intu‐
ition behind it is that by multiplying every activation with every other activation for a
given layer, we capture the correlations between the neurons. Those correlations
encode the style as it is a measure of the activation distribution, rather than the abso‐
lute activations.

With this in mind, there are a couple of things we can experiment with. One thing to
consider is zero values. Taking the dot product of a vector with itself transposed will
produce a zero if either multiplicand is zero. That makes it impossible to spot correla‐
tions with zeros. Since zeros appear quite often, this is rather unwanted. A simple fix
is to add a delta to the features before doing the dot operation. A value of –1 works
well:

return K.dot(features - 1, K.transpose(features - 1))

We can also experiment with adding a constant factor to the expression. This can
smooth or exaggerate the results. Again, –1 works well.

A final consideration is that we’re taking the gram matrix of all the activations. This
might seem odd—shouldn’t we do this just for the channels per pixel? What really is
happening is that we calculate the gram matrix for the channels for each pixel and
then look at how they correlate over the entire image. This allows for a shortcut: we
can calculate the mean channels and use that as the gram matrix. This gives us an
image that captures the average style and is therefore more regular. It also runs a bit
faster:

def gram_matrix_mean(x):
 x = K.mean(x, axis=1)
 x = K.mean(x, axis=1)

154 | Chapter 12: Image Style

 features = K.batch_flatten(x)
 return K.dot(features - 1,
 K.transpose(features - 1)) / x.shape[0].value

The total variation loss we added in this recipe tells the network to keep the differ‐
ence between neighboring pixels in check. Without this, the result will be more pixe‐
lated and more jumpy. In a way this approach is very similar to the regularization we
use to keep the weights or output of a network layer in check. The overall effect is
comparable to applying a slight blur filter on the output pixel.

12.5 Improving the Loss Function to Increase Image
Coherence
Problem
How do you make the resulting image from the captured style less pixelated?

Solution
Add a loss component to control for the local coherence of the image.

The image from the previous recipe already looks quite reasonable. However, if we
look closely it seems somewhat pixelated. We can guide the algorithm away from this
by adding a loss function that makes sure that the image is locally coherent. We com‐
pare each pixel with its neighbor to the left and down. By trying to minimize that dif‐
ference, we introduce a sort of blurring of the image:

def total_variation_loss(x, exp=1.25):
 _, d1, d2, d3 = x.shape
 a = K.square(x[:, :d1 - 1, :d2 - 1, :] - x[:, 1:, :d2 - 1, :])
 b = K.square(x[:, :d1 - 1, :d2 - 1, :] - x[:, :d1 - 1, 1:, :])
 return K.sum(K.pow(a + b, exp))

The 1.25 exponent determines how much we punish outliers. Adding this to our loss
gives:

loss_variation = total_variation_loss(result_image, h, w) / 5000
loss_with_variation = loss_variation + loss_style
evaluator_with_variation = Evaluator(loss_with_variation, result_image)

12.5 Improving the Loss Function to Increase Image Coherence | 155

If we run this evaluator for 100 steps we get a pretty convincing-looking picture:

Discussion
In this recipe we added the final component to our loss function that keeps the pic‐
ture globally looking like the content image. Effectively what we’re doing here is opti‐
mizing the generated image such that the activations in the upper layers correspond
to the content image and the activations of the lower layers to the style image. Since
the lower layers correspond to style and the higher layers to content, we can accom‐
plish style transfer this way.

The results can be quite striking, to the point where people new to the field think that
computers can now do art. But tuning is still required as some styles are a lot wilder
than others, as we’ll see in the next recipe.

12.6 Transferring the Style to a Different Image
Problem
How do you apply the captured style from one image to another image?

Solution
Use a loss function that balances the content from one image with the style from
another.

156 | Chapter 12: Image Style

It would be easy to run the code from the previous recipe over an existing image,
rather than a noise image, but the results aren’t that great. At first it seems it is apply‐
ing the style to the existing image, but with each step the original image dissolves a
little. If we keep applying the algorithm the end result will be more or less the same,
independent of the starting image.

We can fix this by adding a third component to our loss function, one that takes into
account the difference between the generated image and our reference image:

def content_loss(base, combination):
 return K.sum(K.square(combination - base))

We’ll now need to add the reference image to our input tensor:

w, h = load_img(base_image_path).size
base_image = K.variable(preprocess_image(base_image_path))
style_image = K.variable(preprocess_image(style2_image_path, target_size=(h, w)))
combination_image = K.placeholder(style_image.shape)
input_tensor = K.concatenate([base_image,
 style_image,
 combination_image], axis=0)

We load the network as before and define our content loss on the last layer of our
network. The last layer contains the best approximation of what the network sees, so
this is really what we want to keep the same:

loss_content = content_loss(feature_outputs[-1][0, :, :, :],
 feature_outputs[-1][2, :, :, :])

We’re going to slightly change the style loss by taking into account the position of the
layer in the network. We want lower layers to carry more weight, since the lower lay‐
ers capture more of the texture/style of an image, while the higher layers are more
involved in the content of the image. This makes it easier for the algorithm to balance
the content of the image (which uses the last layer) and the style (which uses mostly
the lower layers):

loss_style = K.variable(0.)
for idx, layer_features in enumerate(feature_outputs):
 loss_style += style_loss(layer_features[1, :, :, :],
 layer_features[2, :, :, :]) * (0.5 ** idx)

Finally, we balance the three components:

loss_content /= 40
loss_variation /= 10000
loss_total = loss_content + loss_variation + loss_style

12.6 Transferring the Style to a Different Image | 157

Running this on a picture of the Oude Kerk (the Old Church) in Amsterdam with
van Gogh’s Starry Skies as the style input gives us:

12.7 Style Interpolation
Problem
You’ve captured the styles of two images, and want to apply a style somewhere
between the two to another image. How can you blend them?

Solution
Use a loss function that takes an extra float indicating what percentage of each style to
apply.

We can easily extend our input tensor to take two style images, say one for summer
and one for winter. After we load the model as before, we can now create a loss for
each of the styles:

loss_style_summer = K.variable(0.)
loss_style_winter = K.variable(0.)
for idx, layer_features in enumerate(feature_outputs):
 loss_style_summer += style_loss(layer_features[1, :, :, :],
 layer_features[-1, :, :, :]) * (0.5 ** idx)
 loss_style_winter += style_loss(layer_features[2, :, :, :],
 layer_features[-1, :, :, :]) * (0.5 ** idx)

158 | Chapter 12: Image Style

We then introduce a placeholder, summerness, that we can feed in to get the desired
summerness loss:

summerness = K.placeholder()
loss_total = (loss_content + loss_variation +
 loss_style_summer * summerness +
 loss_style_winter * (1 - summerness))

Our Evaluator class doesn’t have a way of passing in summerness. We could create a
new class or subclass the existing one, but in this case we can get away with “monkey
patching”:

combined_evaluator = Evaluator(loss_total, combination_image,
 loss_content=loss_content,
 loss_variation=loss_variation,
 loss_style=loss_style)
iterate = K.function([combination_image, summerness],
 combined_evaluator.iterate.outputs)
combined_evaluator.iterate = lambda inputs: iterate(inputs + [0.5])

This will create an image that is 50% summer, but we can specify any value.

Discussion
Adding yet another component to the loss variable allows us to specify the weights
between two different styles. Nothing is stopping us, of course, from adding even
more style images and varying their weights. It’s also worth exploring varying the rel‐
ative weights of the style images; van Gogh’s Starry Skies image is very stark and its
style will easily overpower that of more subtle paintings.

12.7 Style Interpolation | 159

CHAPTER 13

Generating Images with Autoencoders

In Chapter 5 we explored how we can generate text in the style of an existing corpus,
whether the works of Shakespeare or code from the Python standard library, while in
Chapter 12 we looked at generating images by optimizing the activation of channels
in a pretrained network. In this chapter we combine those techniques and build on
them to generate images based on examples.

Generating images based on examples is an area of active research where new ideas
and breakthroughs are reported on a monthly basis. The state-of-the-art algorithms,
however, are beyond the scope of this book in terms of model complexity, training
time, and data needed. Instead, we’ll be working in a somewhat restricted domain:
hand-drawn sketches.

We’ll start with looking at Google’s Quick Draw data set. This is the result of an online
drawing game and contains many hand-drawn pictures. The drawings are stored in a
vector format, so we’ll convert them to bitmaps. We’ll pick sketches with one label:
cats.

Based on these cat sketches, we’ll build an autoencoder model that is capable of learn‐
ing catness—it can convert a cat drawing into an internal representation and then
generate something similar-looking from that internal representation. We’ll look at
visualizing the performance of this network on our cats first.

We’ll then switch to a dataset of hand-drawn digits and then move on to variational
autoencoders. These networks produce dense spaces that are an abstract representa‐
tion of their inputs from which we can sample. Each sample will result in a realistic
looking image. We can even interpolate between points and see how the images grad‐
ually change.

161

Finally, we’ll look at conditional variational autoencoders, which take into account a
label when training and therefore can reproduce images of a certain class in a random
fashion.

Code related to this chapter can be found in the following notebooks:

13.1 Quick Draw Cat Autoencoder
13.2 Variational Autoencoder

13.1 Importing Drawings from Google Quick Draw
Problem
Where can you get a set of everyday hand drawn images?

Solution
Use Google Quick Draw’s dataset.

Google Quick Draw is an online game where a user is challenged to draw something
and see if an AI can guess what they were trying to create. The game is entertaining,
and as a side effect a large database of labeled drawings is produced. Google has made
this dataset accessible for anybody wanting to play with machine learning.

The data is available in a number of formats. We’ll work with a binary-encoded ver‐
sion of the simplified vector drawings. Let’s start by getting all the cats:

BASE_PATH = 'https://storage.googleapis.com/quickdraw_dataset/full/binary/
path = get_file('cat', BASE_PATH + 'cat.bin')

We’ll collect the images by unpacking them one by one. They are stored in a binary
vector format that we’ll draw on an empty bitmap. The drawings start with a 15-byte
header, so we just keep processing until our file no longer has at least 15 bytes:

x = []
with open(path, 'rb') as f:
 while True:
 img = PIL.Image.new('L', (32, 32), 'white')
 draw = ImageDraw.Draw(img)
 header = f.read(15)
 if len(header) != 15:
 break

A drawing is a list of strokes, each made up of a series of x and y coordinates. The x
and y coordinates are stored separately, so we need to zip them into a list to feed into
the ImageDraw object we just created:

 strokes, = unpack('H', f.read(2))
 for i in range(strokes):
 n_points, = unpack('H', f.read(2))

162 | Chapter 13: Generating Images with Autoencoders

https://quickdraw.withgoogle.com/
https://github.com/googlecreativelab/quickdraw-dataset

 fmt = str(n_points) + 'B'
 read_scaled = lambda: (p // 8 for
 p in unpack(fmt, f.read(n_points)))
 points = [*zip(read_scaled(), read_scaled())]
 draw.line(points, fill=0, width=2)
 img = img_to_array(img)
 x.append(img)

Over a hundred thousand drawings of cats are yours.

Discussion
Harvesting user-generated data using a game is an interesting way to build up a data‐
set for machine learning. It’s not the first time Google has used this technique—a few
years ago it ran the Google Image Labeler game, where two players that didn’t know
each other would label images and get points for matching labels. The results of that
game were never made available to the public, though.

There are 345 categories in the dataset. In this chapter we’re only using cats, but you
could take the rest for a spin to build an image classifier. The dataset has drawbacks,
chief among them the fact that not all drawings are finished; the game ends when the
AI recognizes the drawing, and for a camel drawing two humps might be enough.

In this recipe we rasterized the images ourselves. Google does make
a numpy array version of the data available where the images have
been pre-rasterized to 28×28 pixels.

13.2 Creating an Autoencoder for Images
Problem
Is it possible to automatically represent an image as a fixed-sized vector even if it isn’t
labeled?

Solution
Use an autoencoder.

In Chapter 9 we saw that we can use a convolutional network to classify an image by
having consecutive layers go from pixels to local features to more structural features
and finally to an abstract representation of the image that we then can use to predict
what the image is about. In Chapter 10 we interpreted that abstract representation of
the image as a vector in a high-dimensional, semantic space and used the fact that
vectors that are close to each other represent similar images as a way to build a
reverse image search engine. Finally, in Chapter 12 we saw that we can visualize what

13.2 Creating an Autoencoder for Images | 163

http://bit.ly/wiki-gil

the activations of the various neurons on different levels in a convolutional network
mean.

To do all this we needed the images to be labeled. Only because the network got to see
a large number of dogs, cats, and many other things was it able to learn an abstract
representation of these in this high-dimensional space. What if we don’t have labels
for our images? Or not enough labels to let the network develop an intuition of what
is what? In these situations autoencoders can be helpful.

The idea behind an autoencoder is to force the network to represent an image as a
vector with a certain size and have a loss function based on how accurately the net‐
work is able to reproduce the input image from that representation. The input and
the expected output are the same, which means we don’t need labeled images. Any set
of images will do.

The structure of the network is very similar to what we’ve seen before; we take the
original image and use a series of convolutional layers and pooling layers to reduce
the size and increase the depth until we have a one-dimensional vector that is an
abstract representation of that image. But instead of calling it a day and using that
vector to predict what the image is, we follow this up with the inverse and go from
this abstract representation of the image through a set of upsampling layers that do
the reverse until we are back with an image again. As our loss function we then take
the difference between the input and the output image:

def create_autoencoder():
 input_img = Input(shape=(32, 32, 1))

 channels = 2
 x = input_img
 for i in range(4):
 channels *= 2
 left = Conv2D(channels, (3, 3),
 activation='relu', padding='same')(x)
 right = Conv2D(channels, (2, 2),
 activation='relu', padding='same')(x)
 conc = Concatenate()([left, right])
 x = MaxPooling2D((2, 2), padding='same')(conc)

 x = Dense(channels)(x)

 for i in range(4):
 x = Conv2D(channels, (3, 3), activation='relu', padding='same')(x)
 x = UpSampling2D((2, 2))(x)
 channels //= 2
 decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

 autoencoder = Model(input_img, decoded)
 autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
 return autoencoder

164 | Chapter 13: Generating Images with Autoencoders

autoencoder = create_autoencoder()
autoencoder.summary()

We can imagine the network architecture as an hourglass. The top and bottom layers
represent images. The smallest point in the network is in the middle, and is often
referred to as the latent representation. We have a latent space with 128 entries here,
which means that we force the network to represent each 32×32-pixel image using
128 floats. The only way the network can minimize the difference between the input
and the output image is by compressing as much information into the latent repre‐
sentation as possible.

We can train the network as before with:

autoencoder.fit(x_train, x_train,
 epochs=100,
 batch_size=128,
 validation_data=(x_test, x_test))

This should converge fairly rapidly.

Discussion
Autoencoders are an interesting type of neural network since they are capable of
learning a compact, lossy representation of their inputs without any supervision. In
this recipe we’ve used them on images, but they’ve also successfully been deployed to
process text or other data in the form of time series.

There are a number of interesting extensions to the autoencoder idea. One of them is
the denoising autoencoder. The idea here is to ask the network to predict the target
image not from itself, but from a damaged version of itself. For example, we could
add some random noise to the input images. The loss function would still compare
the output of the network with the original (non-noised) input, so the network would
effectively learn how to remove noise from the pictures. In other experiments this
technique has proven to be useful when it comes to restoring colors to black and
white pictures.

We used the abstract representation of an image in Chapter 10 to create a reverse
image search engine, but we needed labels for that. With an autoencoder we don’t
need those labels; we can measure the distance between images after the model has
trained on nothing but a set of images. It turns out that if we use a denoising autoen‐
coder the performance of our image similarity algorithm increases. The intuition
here is that the noise tells the network what not to pay attention to, similarly to how
data augmentation works (see “Preprocessing of Images” on page 22).

13.2 Creating an Autoencoder for Images | 165

13.3 Visualizing Autoencoder Results
Problem
You’d like to get an idea of how well your autoencoder worked.

Solution
Sample a few random cat pictures from the input and have the model predict those;
then render input and output as two rows.

Let’s predict some cats:

cols = 25
idx = np.random.randint(x_test.shape[0], size=cols)
sample = x_test[idx]
decoded_imgs = autoencoder.predict(sample)

And show them in our notebook:

def decode_img(tile):
 tile = tile.reshape(tile.shape[:-1])
 tile = np.clip(tile * 400, 0, 255)
 return PIL.Image.fromarray(tile)

overview = PIL.Image.new('RGB', (cols * 32, 64 + 20), (128, 128, 128))
for idx in range(cols):
 overview.paste(decode_img(sample[idx]), (idx * 32, 5))
 overview.paste(decode_img(decoded_imgs[idx]), (idx * 32, 42))
f = BytesIO()
overview.save(f, 'png')
display(Image(data=f.getvalue()))

As you can see, the network did pick up on the basic shapes, but doesn’t seem to be
very sure about itself, which results in vague icon drawings, almost like shadows.

In the next recipe we’ll see if we can do better.

Discussion
Since the input and the output of the autoencoder should be similar, the best way to
check the performance of our network is to just pick some random icons from our
validation set and ask the network to reconstruct them. Using PIL to create an image
that shows two rows and display it inside of the Jupyter notebook is something we’ve
seen before.

166 | Chapter 13: Generating Images with Autoencoders

One of the issues with the approach here is that the loss function we are using causes
the network to smudge its output. The input drawings contain thin lines, but the out‐
put of our model doesn’t. Our model has no incentive to predict sharp lines, because
it is uncertain of the exact position of the lines, so it would rather spread its bets and
draw vague lines. This way there is a high chance that at least some pixels will be a hit.
To improve this, we could try to design a loss function that forces the network to
limit the number of pixels it draws, or puts a premium on sharp lines.

13.4 Sampling Images from a Correct Distribution
Problem
How do you make sure that every point in the vector represents a reasonable image?

Solution
Use a variational autoencoder.

Autoencoders are quite interesting as a way to represent an image as a vector that is
much smaller than the image itself. But the space of these vectors is not dense; that is,
every image has a vector in that space, but not every vector in that space represents a
reasonable image. The decoder part of the autoencoder will of course create an image
out of any vector, but most of them are just not going to be recognizable. Variational
autoencoders do have this property.

In this and the following recipes in the chapter we’ll work with the MNIST dataset of
handwritten digits, comprised of 60,000 training samples and 10,000 test samples.
The approach described here does work on icons, but it complicates the model and
for decent performance we’d need more icons than we have. If you are interested,
there is a working model in the notebook directory. Let’s start by loading the data:

def prepare(images, labels):
 images = images.astype('float32') / 255
 n, w, h = images.shape
 return images.reshape((n, w * h)), to_categorical(labels)

train, test = mnist.load_data()
x_train, y_train = prepare(*train)
x_test, y_test = prepare(*test)
img_width, img_height = train[0].shape[1:]

The key idea behind a variational autoencoder is to add a term to the loss function
that represents the difference in statistical distribution between the images and the
abstract representations. For this we’ll use the Kullback–Leibler divergence. We can
think of this as a distance metric for the space of probability distributions, even

13.4 Sampling Images from a Correct Distribution | 167

though it is technically not a distance metric. The Wikipedia article has the details for
those who want to read up on the math.

The basic outline of our model is similar to that of the previous recipe. We start out
with an input representing our pixels, force this through some hidden layers, and
sample it down to a very small representation. We then work our way up again until
we have our pixels back:

pixels = Input(shape=(num_pixels,))
encoder_hidden = Dense(512, activation='relu')(pixels)
z_mean = Dense(latent_space_depth,
 activation='linear')(encoder_hidden)
z_log_var = Dense(latent_space_depth,
 activation='linear')(encoder_hidden)
z = Lambda(sample_z, output_shape=(latent_space_depth,))(
 [z_mean, z_log_var])
decoder_hidden = Dense(512, activation='relu')
reconstruct_pixels = Dense(num_pixels, activation='sigmoid')
hidden = decoder_hidden(z)
outputs = reconstruct_pixels(hidden)
auto_encoder = Model(pixels, outputs)

The interesting part here is the z tensor and the Lambda it gets assigned to. This tensor
will hold the latent representation of our image, and the Lambda uses the sample_z
method to do the sampling:

def sample_z(args):
 z_mean, z_log_var = args
 eps = K.random_normal(shape=(batch_size, latent_space_depth),
 mean=0., stddev=1.)
 return z_mean + K.exp(z_log_var / 2) * eps

This is where we randomly sample points with a normal distribution using the two
variables z_mean and z_log_var.

Now on to our loss function. The first component is the reconstruction loss, which
measures the difference between the input pixels and the output pixels:

def reconstruction_loss(y_true, y_pred):
 return K.sum(K.binary_crossentropy(y_true, y_pred), axis=-1)

The second thing we need is a component in our loss function that uses the Kull‐
back–Leibler divergence to steer the distribution in the right direction:

def KL_loss(y_true, y_pred):
 return 0.5 * K.sum(K.exp(z_log_var) +
 K.square(z_mean) - 1 - z_log_var,
 axis=1)

168 | Chapter 13: Generating Images with Autoencoders

http://bit.ly/k-l-d

We then simply add this up:

def total_loss(y_true, y_pred):
 return (KL_loss(y_true, y_pred) +
 reconstruction_loss(y_true, y_pred))

And we can compile our model with:

auto_encoder.compile(optimizer=Adam(lr=0.001),
 loss=total_loss,
 metrics=[KL_loss, reconstruction_loss])

This will handily also keep track of the individual components of the loss during
training.

This model is slightly complicated due to the extra loss function and the out-of-band
call to sample_z; to get a look at the details, it is best viewed in the corresponding
notebook. We can now train the model as before:

cvae.fit(x_train, x_train, verbose = 1, batch_size=batch_size, epochs=50,
 validation_data = (x_test, x_test))

Once the training is finished, we want to use the results by feeding a random point in
the latent space and seeing what image rolls out. We can do this by creating a second
model that has as an input the middle layer of our auto_encoder model and as output
our target image:

decoder_in = Input(shape=(latent_space_depth,))
decoder_hidden = decoder_hidden(decoder_in)
decoder_out = reconstruct_pixels(decoder_hidden)
decoder = Model(decoder_in, decoder_out)

We can now generate a random input and then convert it to a picture:

random_number = np.asarray([[np.random.normal()
 for _ in range(latent_space_depth)]])
def decode_img(a):
 a = np.clip(a * 256, 0, 255).astype('uint8')
 return PIL.Image.fromarray(a)

decode_img(decoder.predict(random_number)
 .reshape(img_width, img_height)).resize((56, 56))

Discussion
Variational autoencoders add an important component to autoencoders when it
comes to generating images rather than just reproducing images; by making sure that
the abstract representations of the images come from a dense space where points close

13.4 Sampling Images from a Correct Distribution | 169

to the origin map to likely images, we can now generate images that have the same
likelihood distribution as our inputs.

The underlying mathematics are a bit beyond the scope of this book. The intuition
here is that some images are more “normal” and some are more unexpected. The
latent space has the same characteristics, so points that are drawn from close to the
origin correspond to images that are “normal,” while more extreme points map to
more unlikely images. Sampling from a normal distribution will result in images that
have the same mixture of expected and unexpected images as the model saw during
training.

Having dense spaces is nice. It allows us to interpolate between points and still get
valid outcomes. For example, if we know that one point in the latent space maps to a
6 and another to an 8, we would expect that the points in between would result in
images that morph from 6 to 8. If we find the same images but in a different style, we
can look for images in between with a mixed style. Or we could even go in the other
direction and expect to find a more extreme style.

In Chapter 3 we looked at word embeddings, where each word has a vector that
projects it into a semantic space, and the sorts of calculations we can do with those.
As interesting as that is, since the space is not dense we typically don’t expect to find
something between two words that somehow is a compromise between the two—no
mule between donkey and horse. Similarly, we can use a pretrained image recognition
network to find a vector for a picture of a cat, but the vectors around it don’t all repre‐
sent variations of cats.

13.5 Visualizing a Variational Autoencoder Space
Problem
How can you visualize the diversity of images that you can generate from your latent
space?

Solution
Use the two dimensions from the latent space to create a grid of generated images.

Visualizing two dimensions from our latent space is straightforward. For higher
dimensions we could first try t-SNE to get back to two dimensions. As luck would
have it, we were only using two dimensions in the previous recipe, so we can just go
through a plane and map each (x, y) position to a point in the latent space. Since we
are using a normal distribution, we’d expect reasonable images to appear in the [–1.5,
1.5] range:

170 | Chapter 13: Generating Images with Autoencoders

num_cells = 10
overview = PIL.Image.new('RGB',
 (num_cells * (img_width + 4) + 8,
 num_cells * (img_height + 4) + 8),
 (128, 128, 128))
vec = np.zeros((1, latent_space_depth))
for x in range(num_cells):
 vec[:, 0] = (x * 3) / (num_cells - 1) - 1.5
 for y in range(num_cells):
 vec[:, 1] = (y * 3) / (num_cells - 1) - 1.5
 decoded = decoder.predict(vec)
 img = decode_img(decoded.reshape(img_width, img_height))
 overview.paste(img, (x * (img_width + 4) + 6,
 y * (img_height + 4) + 6))
overview

This should get us a nice image of the different digits the network learned:

Discussion
By mapping (x, y) to our latent space and decoding the results to images we get a nice
overview of what our space contains. As we can see, the space is indeed quite dense.
Not all points result in digits per se; some, as expected, represent in-between forms.
But the model does find a way to distribute the digits in a natural way on the grid.

The other thing to note here is that our variational autoencoder does a great job of
compressing images. Every input image is represented in the latent space by just 2
floats, while their pixel representations use 28 × 28 = 784 floats. That’s a compression
ratio of almost 400, outperforming JPEG by quite a margin. Of course, the compres‐
sion is rather lossy—a handwritten 5 will after encoding and decoding still look like a
handwritten 5 and still be in the same style, but at a pixel level there is no real corre‐
spondence. Also, this form of compression is extremely domain-specific. It only

13.5 Visualizing a Variational Autoencoder Space | 171

works for handwritten digits, while JPEG can be used to compress all sorts of images
and photos.

13.6 Conditional Variational Autoencoders
Problem
How do we generate images of a certain type rather than completely random ones?

Solution
Use a conditional variational autoencoder.

The autoencoder from the previous two recipes does a great job generating random
digits and is also capable of taking in a digit and encoding it in a nice, dense, latent
space. But it doesn’t know a 5 from a 3, and so the only way we can get it to generate a
random 3 is to first find all the 3s in the latent space and then sample from that sub‐
space. Conditional variational autoencoders help here by taking in the label as an
input and then concatenating the label to the latent space vector z in the model.

This does two things. First, it lets the model take the actual label into account when
learning the encoding. Second, since it adds the label to the latent space, our decoder
will now take both a point in the latent space and a label, which allows us to explicitly
ask for a specific digit to be generated. The model now looks like this:

pixels = Input(shape=(num_pixels,))
label = Input(shape=(num_labels,), name='label')
inputs = concat([pixels, label], name='inputs')

encoder_hidden = Dense(512, activation='relu',
 name='encoder_hidden')(inputs)
z_mean = Dense(latent_space_depth,
 activation='linear')(encoder_hidden)
z_log_var = Dense(latent_space_depth,
 activation='linear')(encoder_hidden)
z = Lambda(sample_z,
 output_shape=(latent_space_depth,))([z_mean, z_log_var])
zc = concat([z, label])

decoder_hidden = Dense(512, activation='relu')
reconstruct_pixels = Dense(num_pixels, activation='sigmoid')
decoder_in = Input(shape=(latent_space_depth + num_labels,))
hidden = decoder_hidden(decoder_in)
decoder_out = reconstruct_pixels(hidden)
decoder = Model(decoder_in, decoder_out)

hidden = decoder_hidden(zc)
outputs = reconstruct_pixels(hidden)
cond_auto_encoder = Model([pixels, label], outputs)

172 | Chapter 13: Generating Images with Autoencoders

We train the model by providing it with both the images and the labels:

cond_auto_encoder.fit([x_train, y_train], x_train, verbose=1,
 batch_size=batch_size, epochs=50,
 validation_data = ([x_test, y_test], x_test))

We can now generate an explicit number 4:

number_4 = np.zeros((1, latent_space_depth + y_train.shape[1]))
number_4[:, 4 + latent_space_depth] = 1
decode_img(cond_decoder.predict(number_4).reshape(img_width, img_height))

Since we specify which digit to generate in a one-hot encoding, we can also ask for
something in between two numbers:

number_8_3 = np.zeros((1, latent_space_depth + y_train.shape[1]))
number_8_3[:, 8 + latent_space_depth] = 0.5
number_8_3[:, 3 + latent_space_depth] = 0.5
decode_img(cond_decoder.predict(number_8_3).reshape(
 img_width, img_height))

Which produces indeed something in between:

Another interesting thing to try is to put the digits on the y-axis and use the x-axis to
pick values for one of our latent dimensions:

num_cells = 10
overview = PIL.Image.new('RGB',
 (num_cells * (img_width + 4) + 8,
 num_cells * (img_height + 4) + 8),
 (128, 128, 128))
img_it = 0
vec = np.zeros((1, latent_space_depth + y_train.shape[1]))
for x in range(num_cells):
 vec = np.zeros((1, latent_space_depth + y_train.shape[1]))
 vec[:, x + latent_space_depth] = 1
 for y in range(num_cells):
 vec[:, 1] = 3 * y / (num_cells - 1) - 1.5
 decoded = cond_decoder.predict(vec)
 img = decode_img(decoded.reshape(img_width, img_height))
 overview.paste(img, (x * (img_width + 4) + 6,
 y * (img_height + 4) + 6))
overview

13.6 Conditional Variational Autoencoders | 173

As you can see, the latent space expresses the style of the digit and the style is consis‐
tent across digits. In this case it seems that it controls how much the digit is slanted.

Discussion
The conditional variational autoencoder marks the final stop on our journey through
the various autoencoders. This type of network enables us to map our digits to a
dense latent space that is also labeled, allowing us to sample random images while
specifying what type they should be.

A side effect of providing the labels to the network is that it now no longer has to
learn the numbers, but can focus on the style of the numbers.

174 | Chapter 13: Generating Images with Autoencoders

CHAPTER 14

Generating Icons Using Deep Nets

In the previous chapter we looked at generating hand-drawn sketches from the Quick
Draw project and digits from the MNIST dataset. In this chapter we’ll try three types
of networks on a slightly more challenging task: generating icons.

Before we can do any generating we need to get our hands on a set of icons. Searching
online for “free icons” results in a lot of hits. None of these are “free as in speech” and
most of them struggle where it comes to “free as in beer.” Also, you can’t freely reuse
the icons, and usually the sites strongly suggest you pay for them after all. So, we’ll
start with how to download, extract, and process icons into a standard format that we
can use in the rest of the chapter.

The first thing we’ll try is to train a conditional variational autoencoder on our set of
icons. We’ll use the network we ended up with in the previous chapter as a basis, but
we’ll add some convolutional layers to it to make it perform better since the icon
space is so much more complex than that of hand-drawn digits.

The second type of network we’ll try is a generative adversarial network. Here we’ll
train two networks, one to generate icons and another to distinguish between gener‐
ated icons and real icons. The competition between the two leads to better results.

The third and final type of network we’ll try is an RNN. In Chapter 5 we used this to
generate texts in a certain style. By reinterpreting icons as a set of drawing instruc‐
tions, we can use the same technique to generate images.

Code related to this chapter can be found in the following notebooks:

14.1 Importing Icons
14.2 Icon Autoencoding
14.3 Icon GAN
14.4 Icon RNN

175

14.1 Acquiring Icons for Training
Problem
How do you get a large set of icons in a standard format?

Solution
Extract them from the Mac application Icons8.

Icons8 distributes a large set of icons—over 63,000. This is partly because icons of dif‐
ferent formats are counted double, but still, it is a nice set. Unfortunately the icons are
distributed inside applications for Mac and Windows. The good news is that a
Mac .dmg archive is really just a p7zip archive containing an application, which itself
is also a p7zip archive. Let’s start by downloading the app. Navigate to https://
icons8.com/app and make sure to download the Mac version (even if you are on
Linux or Windows). Now install the command-line version of p7zip for your favorite
operating system and extract the contents of the .dmg file to its own folder:

7z x Icons8App_for_Mac_OS.dmg

The .dmg contains some metainformation and the Mac application. Let’s unpack the
app too:

cd Icons8\ v5.6.3
7z x Icons8.app

Like an onion, this thing has many layers. You should now see a .tar file that also
needs unpacking:

tar xvf icons.tar

This gives us a directory called icons that contains an .ldb file, which suggests that the
directory represents a LevelDB database. Switching to Python, we can take a look
inside:

Adjust to your local path:
path = '/some/path/Downloads/Icons8 v5.6.3/icons'
db = plyvel.DB(path)

for key, value in db:
 print(key)
 print(value[:400])
 break

> b'icon_1'
b'TSAF\x03\x00\x02\x00\x07\x00\x00\x00\x00\x00\x00\x00$\x00\x00\x00
\x18\x00\x00\x00\r\x00\x00\x00-\x08id\x00\x08Messaging\x00\x08categ
ory\x00\x19\x00\x03\x00\x00\x00\x08Business\x00\x05\x01\x08User
Interface\x00\x08categories\x00\x18\x00\x00\x00\x03\x00\x00\x00\x08
Basic Elements\x00\x05\x04\x01\x05\x01\x08Business

176 | Chapter 14: Generating Icons Using Deep Nets

https://icons8.com/app
https://icons8.com/app

Communication\x00\x05\x03\x08subcategories\x00\x19\x00\r\x00\x00\x00
\x08contacts\x00\x08phone book\x00\x08contacts
book\x00\x08directory\x00\x08mail\x00\x08profile\x00\x08online\x00
\x08email\x00\x08records\x00\x08alphabetical\x00\x08sim\x00\x08phone
numbers\x00\x08categorization\x00\x08tags\x00\x0f9\x08popularity\x00
\x18\x00\x00\x02\x00\x00\x00\x1c\x00\x00\x00\xe8\x0f\x00\x00<?xml
version="1.0" encoding="utf-8"?>\n<!-- Generato'

Bingo. We have found our icons, and they seem to be encoded using the .svg vector
format. It looks like they are contained in yet another format, with the header TSAF.
Reading online, it seems to be some IBM-related format, but a Python library to
extract data from this is not easy to find. Then again, this simple dump suggests that
we are dealing with key/value pairs separated by a \x00 with the key and value sepa‐
rated by a \x08. It doesn’t quite pan out, but it is good enough to build a hacky parser:

splitter = re.compile(b'[\x00-\x09]')

def parse_value(value):
 res = {}
 prev = ''
 for elem in splitter.split(value):
 if not elem:
 continue
 try:
 elem = elem.decode('utf8')
 except UnicodeDecodeError:
 continue
 if elem in ('category', 'name', 'platform',
 'canonical_name', 'svg', 'svg.simplified'):
 res[elem] = prev
 prev = elem
 return res

This extracts the SVGs and some basic properties that might come in handy later. The
various platforms contain more or less the same icons, so we need to pick one plat‐
form. iOS seems to have the most icons, so let’s go with that:

icons = {}
for _, value in db:
 res = parse_value(value)
 if res.get('platform') == 'ios':
 name = res.get('name')
 if not name:
 name = res.get('canonical_name')
 if not name:
 continue
 name = name.lower().replace(' ', '_')
 icons[name] = res

Now let’s write this all to disk for later processing. We’ll keep the SVGs but also write
out bitmaps as PNGs:

14.1 Acquiring Icons for Training | 177

saved = []
for icon in icons.values():
 icon = dict(icon)
 if not 'svg' in icon:
 continue
 svg = icon.pop('svg')
 try:
 drawing = svg2rlg(BytesIO(svg.encode('utf8')))
 except ValueError:
 continue
 except AttributeError:
 continue
 open('icons/svg/%s.svg' % icon['name'], 'w').write(svg)
 p = renderPM.drawToPIL(drawing)
 for size in SIZES:
 resized = p.resize((size, size), Image.ANTIALIAS)
 resized.save('icons/png%s/%s.png' % (size, icon['name']))
 saved.append(icon)
json.dump(saved, open('icons/index.json', 'w'), indent=2)

Discussion
Even though there are many sites online advertising free icons, in practice getting a
good training set is rather involved. In this case we found the icons as SVGs inside a
mysterious TSAF store inside a LevelDB database inside a Mac app inside of the .dmg
file that we downloaded. On the one hand, this seems more involved than it should
be. On the other hand, it goes to show that with a little detective work we can uncover
some very interesting datasets.

14.2 Converting the Icons to a Tensor Representation
Problem
How do you convert the saved icons into a format suitable for training a network?

Solution
Concatenate them and normalize them.

This is similar to how we handled images for the pretrained network, except that now
we will train our own network. We know all images will be 32×32 pixels, and we’ll
keep track of the mean and standard deviation so we can normalize and denormalize
the images correctly. We’ll also split the data up into a training set and a test set:

def load_icons(train_size=0.85):
 icon_index = json.load(open('icons/index.json'))
 x = []
 img_rows, img_cols = 32, 32
 for icon in icon_index:

178 | Chapter 14: Generating Icons Using Deep Nets

 if icon['name'].endswith('_filled'):
 continue
 img_path = 'icons/png32/%s.png' % icon['name']
 img = load_img(img_path, grayscale=True,
 target_size=(img_rows, img_cols))
 img = img_to_array(img)
 x.append(img)
 x = np.asarray(x) / 255
 x_train, x_val = train_test_split(x, train_size=train_size)
 return x_train, x_val

Discussion
The processing is fairly standard. We read in the images, append them all to one
array, normalize the array, and then split the resulting set into a training set and test
set. We normalize by just dividing the grayscale pixels by 255. The activation we’ll use
later on is a sigmoid, which will only produce positive numbers, so no need to sub‐
tract the mean.

14.3 Using a Variational Autoencoder to Generate Icons
Problem
You’d like to generate icons in a certain style.

Solution
Add convolutional layers to the MNIST solution of Chapter 13.

The variational autoencoder we used to generate digits had a latent space of only two
dimensions. We can get away with such a small space because ultimately there isn’t
that much variation between handwritten digits. By their nature, there are only 10
different ones that all look fairly similar. Moreover, we used a fully connected layer to
go to and from the latent space. Our icons are much more diverse, so we’ll use a few
convolutional layers to reduce the size of the image before we apply a fully connected
layer and end up with our latent state:

input_img = Input(shape=(32, 32, 1))
channels = 4
x = input_img
for i in range(5):
 left = Conv2D(channels, (3, 3),
 activation='relu', padding='same')(x)
 right = Conv2D(channels, (2, 2),
 activation='relu', padding='same')(x)
 conc = Concatenate()([left, right])
 x = MaxPooling2D((2, 2), padding='same')(conc)
 channels *= 2

14.3 Using a Variational Autoencoder to Generate Icons | 179

 x = Dense(channels)(x)
 encoder_hidden = Flatten()(x)

We handle the loss function and distribution as before. The weight for the KL_loss is
important. Set it too low and the resulting space won’t be dense. Set it too high and
the network will quickly learn that predicting empty bitmaps gets it a decent
reconstruction_loss and a great KL_loss:

z_mean = Dense(latent_space_depth,
 activation='linear')(encoder_hidden)
z_log_var = Dense(latent_space_depth,
 activation='linear')(encoder_hidden)

def KL_loss(y_true, y_pred):
 return (0.001 * K.sum(K.exp(z_log_var)
 + K.square(z_mean) - 1 - z_log_var, axis=1))

def reconstruction_loss(y_true, y_pred):
 y_true = K.batch_flatten(y_true)
 y_pred = K.batch_flatten(y_pred)
 return binary_crossentropy(y_true, y_pred)

 def total_loss(y_true, y_pred):
 return (reconstruction_loss(y_true, y_pred)
 + KL_loss(y_true, y_pred))

Now we’ll upscale the latent state back into an icon. As before, we do this in parallel
for the encoder and the autoencoder:

z = Lambda(sample_z,
 output_shape=(latent_space_depth,))([z_mean, z_log_var])
decoder_in = Input(shape=(latent_space_depth,))

d_x = Reshape((1, 1, latent_space_depth))(decoder_in)
e_x = Reshape((1, 1, latent_space_depth))(z)
for i in range(5):
 conv = Conv2D(channels, (3, 3), activation='relu', padding='same')
 upsampling = UpSampling2D((2, 2))
 d_x = conv(d_x)
 d_x = upsampling(d_x)
 e_x = conv(e_x)
 e_x = upsampling(e_x)
 channels //= 2

final_conv = Conv2D(1, (3, 3), activation='sigmoid', padding='same')
auto_decoded = final_conv(e_x)
decoder_out = final_conv(d_x)

To train the network, we need to make sure the training and test sets have a size that
is divisible by the batch_size, as otherwise the KL_loss function will fail:

180 | Chapter 14: Generating Icons Using Deep Nets

def truncate_to_batch(x):
 l = x.shape[0]
 return x[:l - l % batch_size, :, :, :]

x_train_trunc = truncate_to_batch(x_train)
x_test_trunc = truncate_to_batch(x_test)
x_train_trunc.shape, x_test_trunc.shape

We can sample some random icons from the space as before:

As you can see, the network definitely learned something about icons. They tend to
have some sort of box that is filled in somewhat and usually don’t touch the outsides
of the 32×32 container. But it is still rather vague!

Discussion
To apply the variational autoencoder we developed in the previous chapter on the
more heterogeneous space of icons we need to use convolutional layers that step by
step reduce the dimensions of the bitmap and increase the abstraction level until we
are in the latent space. This is very similar to how image recognition networks func‐
tion. Once we have our icons projected in a 128-dimensional space, we use the
upsampling layers for both the generator and the autoencoder.

The result is more interesting than a slam dunk. Part of the issue is that icons, like the
cats in the previous chapter, contain a lot of line drawings, which makes it hard for
the network to get them exactly right. When in doubt, the network will opt for vague
lines instead. Worse, icons often contain regions that are dithered like a checker‐
board. These patterns are certainly learnable, but an off-by-one pixel error would
mean that the entire answer is now completely wrong!

Another reason why the performance of our network is relatively poor is that we have
relatively few icons. The next recipe shows a trick to get around that.

14.4 Using Data Augmentation to Improve the
Autoencoder’s Performance
Problem
How can you improve on the performance of your network without getting more
data?

14.4 Using Data Augmentation to Improve the Autoencoder’s Performance | 181

Solution
Use data augmentation.

Our autoencoder in the previous recipe learned the vague outlines of our icon set, but
nothing more than that. The results suggested that it was picking up on something,
but not enough to do a stellar job. Throwing more data at the problem could help, but
it would require us to find more icons, and those icons would have to be sufficiently
similar to our original set to help. Instead we’re going to generate more data.

The idea behind data augmentation, as discussed in Chapter 1, is to generate varia‐
tions of the input data that shouldn’t matter to the network. In this case we want our
network to learn the notion of iconness by feeding it icons. But if we flip or rotate our
icons, does that make them less icony? Not really. Doing this will increase our input
by a factor of 16. Our network will learn from these new training examples that rota‐
tions and flipping don’t matter and hopefully perform better. Augmentation would
look like this:

def augment(icons):
 aug_icons = []
 for icon in icons:
 for flip in range(4):
 for rotation in range(4):
 aug_icons.append(icon)
 icon = np.rot90(icon)
 icon = np.fliplr(icon)
 return np.asarray(aug_icons)

Let’s apply that to our training and test data:

x_train_aug = augment(x_train)
x_test_aug = augment(x_test)

Training the network will now obviously take a bit longer. But the results are better,
too:

Discussion
Data augmentation is a technique widely used when it comes to computer images.
Rotations and flips are sort of obvious ways of doing this, but given the fact that we
actually started out with the .svg representation of the icons there are a number of
other things we could do. SVG is a vector format, so we could easily create icons that
have a slight rotation or magnification without getting the sort of artifacts that we’d
get if our baseline data comprised just bitmaps.

182 | Chapter 14: Generating Icons Using Deep Nets

The icon space that we ended up with is better than the one from the previous recipe
and it seems to capture some form of iconness.

14.5 Building a Generative Adversarial Network
Problem
You’d like to construct a network that can generate images and another that can learn
to distinguish generated images from the originals.

Solution
Create an image generator and an image discriminator that can work together.

The key insight behind generative adversarial networks is that if you have two net‐
works, one generating images and one judging the generated images, and train them
in tandem, they keep each other on their toes as they learn. Let’s start with a generator
network. This is similar to what we did with the decoder bit of an autoencoder:

inp = Input(shape=(latent_size,))
x = Reshape((1, 1, latent_size))(inp)

channels = latent_size
padding = 'valid'
strides = 1
for i in range(4):
 x = Conv2DTranspose(channels, kernel_size=4,
 strides=strides, padding=padding)(x)
 x = BatchNormalization()(x)
 x = LeakyReLU(.2)(x)

 channels //= 2
 padding = 'same'
 strides = 2

x = Conv2DTranspose(1, kernel_size=4, strides=1, padding='same')(x)
image_out = Activation('tanh')(x)

model = Model(inputs=inp, outputs=image_out)

The other network, the discriminator, will take in an image and output whether it
thinks it is generated or one of the originals. In that sense it looks like a classic convo‐
lutional network that has just a binary output:

inp = Input(shape=(32, 32, 1))
x = inp

channels = 16

for i in range(4):

14.5 Building a Generative Adversarial Network | 183

 layers = []
 conv = Conv2D(channels, 3, strides=2, padding='same')(x)
 if i:
 conv = BatchNormalization()(conv)
 conv = LeakyReLU(.2)(conv)
 layers.append(conv)
 bv = Lambda(lambda x: K.mean(K.abs(x[:] - K.mean(x, axis=0)),
 axis=-1,
 keepdims=True))(conv)
 layers.append(bv)
 channels *= 2
 x = Concatenate()(layers)

x = Conv2D(128, 2, padding='valid')(x)
x = Flatten(name='flatten')(x)

fake = Dense(1, activation='sigmoid', name='generation')(x)

m = Model(inputs=inp, outputs=fake)

In the next recipe we’ll look at how to train these two networks together.

Discussion
Generative adversarial networks or GANs are a fairly recent innovation for generat‐
ing images. One way to look at them is to see the two component networks, the gen‐
erator and the discriminator, as learning together, becoming better in competition.

The other way to look at them is to see the discriminator as a dynamic loss function
for the generator. A straightforward loss function works well when a network is
learning to distinguish between cats and dogs; something is a cat, or it isn’t and we
can use as a loss function the difference between the answer and the truth.

When generating images, this is trickier. How do you compare two images? Earlier in
this chapter, when we were generating images using autoencoders, we ran into this
problem. There, we just compared images pixel by pixel; that works when seeing if
two images are the same, but it doesn’t work so well for similarity. Two icons that are
exactly the same but offset by one pixel won’t necessarily have many pixels in the
same position. As a result, the autoencoder often opted to generate fuzzy images.

Having a second network do the judging allows the overall system to develop a sense
of image similarity that is more fluid. Moreover, it can become stricter as the images
become better, while with the autoencoder if we start with too much emphasis on the
dense space the network will never learn.

184 | Chapter 14: Generating Icons Using Deep Nets

14.6 Training Generative Adversarial Networks
Problem
How do you train the two components of a GAN together?

Solution
Fall back on the underlying TensorFlow framework to run both networks together.

Normally we just let Keras do the heavy lifting when it comes to talking to the under‐
lying TensorFlow framework. But the best we can do using Keras directly is alternate
between training the generator and the discriminator network, which is suboptimal.
Qin Yongliang has written a blog post that describes how to get around this.

We’ll start by generating some noise and feeding that into the generator to get a gen‐
erated image, and then feed a real image and a generated image into the discrimina‐
tor:

noise = Input(shape=g.input_shape[1:])
real_data = Input(shape=d.input_shape[1:])

generated = g(noise)
gscore = d(generated)
rscore = d(real_data)

Now we can construct two loss functions. The generator is scored against how likely
to be real the discriminator thought the image was. The discriminator is scored on a
combination of how well it did with fake and real images:

dloss = (- K.mean(K.log((1 - gscore) + .1 * K.log((1 - rscore)
 + .9 * K.log((rscore)))
gloss = - K.mean(K.log((gscore))

Now we’ll calculate the gradients to optimize these two loss functions for the traina‐
ble weights of the two networks:

optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.2)
grad_loss_wd = optimizer.compute_gradients(dloss, d.trainable_weights)
update_wd = optimizer.apply_gradients(grad_loss_wd)
grad_loss_wg = optimizer.compute_gradients(gloss, g.trainable_weights)
update_wg = optimizer.apply_gradients(grad_loss_wg)

We collect the various steps and tensors:

other_parameter_updates = [get_internal_updates(m) for m in [d, g]]
train_step = [update_wd, update_wg, other_parameter_updates]
losses = [dloss, gloss]
learning_phase = K.learning_phase()

And we’re ready to set up the trainer. Keras needs the learning_phase set:

14.6 Training Generative Adversarial Networks | 185

http://bit.ly/2ILx7Te

 def gan_feed(sess,batch_image, z_input):
 feed_dict = {
 noise: z_input,
 real_data: batch_image,
 learning_phase: True,
 }
 loss_values, = sess.run([losses], feed_dict=feed_dict)

The variables of which we can provide by generating our own batches:

sess = K.get_session()
l = x_train.shape[0]
l -= l % BATCH_SIZE
for i in range(epochs):
 np.random.shuffle(x_train)
 for batch_start in range(0, l, BATCH_SIZE):
 batch = x_train[batch_start: batch_start + BATCH_SIZE]
 z_input = np.random.normal(loc=0.,
 scale=1.,
 size=(BATCH_SIZE, LATENT_SIZE))
 losses = gan_feed(sess, batch, z_input)

Discussion
Updating the weights for both networks in one go took us down to the level of Ten‐
sorFlow itself. While this is a bit hairy, it is also good to get to know the underlying
systems from time to time and not always rely on the “magic” that Keras provides.

There are a number of implementations on the web that use the
easy way out and just run both networks step by step, but not at the
same time.

14.7 Showing the Icons the GAN Produces
Problem
How do you show the progress that the GAN is making while it learns?

Solution
Add an icon renderer after each epoch.

Since we’re running our own batch processing, we might as well take advantage of
this and update the notebook with the intermediate result at the end of each epoch.
Let’s start with rendering a set of icons using the generator:

def generate_images(count):
 noise = np.random.normal(loc=0.,

186 | Chapter 14: Generating Icons Using Deep Nets

 scale=1.,
 size=(count, LATENT_SIZE))
 for tile in gm.predict([noise]).reshape((count, 32, 32)):
 tile = (tile * 300).clip(0, 255).astype('uint8')
 yield PIL.Image.fromarray(tile)

Next, let’s put them on a poster overview:

def poster(w_count, h_count):
 overview = PIL.Image.new('RGB',
 (w_count * 34 + 2, h_count * 34 + 2),
 (128, 128, 128))
 for idx, img in enumerate(generate_images(w_count * h_count)):
 x = idx % w_count
 y = idx // w_count
 overview.paste(img, (x * 34 + 2, y * 34 + 2))
 return overview

We can now add the following code to our epoch loop:

 clear_output(wait=True)
 f = BytesIO()
 poster(8, 5).save(f, 'png')
 display(Image(data=f.getvalue()))

After one epoch some vague icons start to appear already:

Another 25 epochs and we are really starting to see some iconness:

Discussion
The final results for generating icons using GANs are better than what we got out of
the autoencoders. Mostly, the drawings are a lot sharper, which can be attributed to

14.7 Showing the Icons the GAN Produces | 187

having the discriminator network decide whether an icon is any good, rather than
comparing icons on a pixel-by-pixel basis.

There has been an explosion of applications for GANs and their
derivatives, ranging from reconstructing 3D models from pictures
to coloring of old pictures and super-resolution, where the network
increases the resolution of a small image without making it look
blurred or blocky.

14.8 Encoding Icons as Drawing Instructions
Problem
You’d like to convert icons into a format that is suitable to train an RNN.

Solution
Encode the icons as drawing instructions.

RNNs can learn sequences, as we saw in Chapter 5. But what if we wanted to generate
icons using an RNN? We could simply encode each icon as a sequence of pixels. One
way to do this would be to view an icon as a sequence of pixels that have been “turned
on.” There are 32 * 32 = 1,024 different pixels, so that would be our vocabulary. This
does work, but we can do a little better by using actual drawing instructions.

If we treat an icon as a series of scanlines, we need only 32 different tokens for the
pixels in a scanline. Add one token to move to the next scanline and a final token to
mark the end of an icon and we have a nice sequential representation. Or, in code:

def encode_icon(img, icon_size):
 size_last_x = 0
 encoded = []
 for y in range(icon_size):
 for x in range(icon_size):
 p = img.getpixel((x, y))
 if img.getpixel((x, y)) < 192:
 encoded.append(x)
 size_last_x = len(encoded)
 encoded.append(icon_size)
 return encoded[:size_last_x]

188 | Chapter 14: Generating Icons Using Deep Nets

We can then decode an image by going through the pixels:

def decode_icon(encoded, icon_size):
 y = 0
 for idx in encoded:
 if idx == icon_size:
 y += 1
 elif idx == icon_size + 1:
 break
 else:
 x = idx
 yield x, y

 icon = PIL.Image.new('L', (32, 32), 'white')
 for x, y in decode_icon(sofar, 32):
 if y < 32:
 icon.putpixel((x, y), 0)

Discussion
Encoding icons as a set of drawing instructions is just another way of preprocessing
the data such that a network will have an easier job learning what we want it to learn,
similar to other approaches we saw in Chapter 1. By having explicit drawing instruc‐
tions we make sure, for example, that the network doesn’t learn to draw vague lines,
as our autoencoder was prone to do—it won’t be able to.

14.9 Training an RNN to Draw Icons
Problem
You’d like to train an RNN to generate icons.

Solution
Train a network based on the drawing instructions.

Now that we can encode single icons as drawing instructions, the next step is to
encode a whole set. Since we’re going to feed chunks into the RNN, asking it to pre‐
dict the next instruction, we actually construct one big “document”:

def make_array(icons):
 res = []
 for icon in icons:
 res.extend(icon)
 res.append(33)
 return np.asarray(res)

def load_icons(train_size=0.90):
 icon_index = json.load(open('icons/index.json'))

14.9 Training an RNN to Draw Icons | 189

 x = []
 img_rows, img_cols = 32, 32
 for icon in icon_index:
 if icon['name'].endswith('_filled'):
 continue
 img_path = 'icons/png32/%s.png' % icon['name']
 x.append(encode_icon(PIL.Image.open(img_path), 32))
 x_train, x_val = train_test_split(x, train_size=train_size)
 x_train = make_array(x_train)
 x_val = make_array(x_val)
 return x_train, x_val

x_train, x_test = load_icons()

We’ll run with the same model that helped us generate our Shakespearean text:

def icon_rnn_model(num_chars, num_layers, num_nodes=512, dropout=0.1):
 input = Input(shape=(None, num_chars), name='input')
 prev = input
 for i in range(num_layers):
 lstm = LSTM(num_nodes, return_sequences=True,
 name='lstm_layer_%d' % (i + 1))(prev)
 if dropout:
 prev = Dropout(dropout)(lstm)
 else:
 prev = lstm
 dense = TimeDistributed(Dense(num_chars,
 name='dense',
 activation='softmax'))(prev)
 model = Model(inputs=[input], outputs=[dense])
 optimizer = RMSprop(lr=0.01)
 model.compile(loss='categorical_crossentropy',
 optimizer=optimizer,
 metrics=['accuracy'])
 return model

model = icon_rnn_model(34, num_layers=2, num_nodes=256, dropout=0)

Discussion
To see in more detail how the network we use here is trained and the data is gener‐
ated, it might be a good idea to look back at Chapter 5.

You can experiment with different numbers of layers and nodes or try different values
for dropout. Different RNN layers also have an effect. The model is somewhat fragile;
it is easy to get into a state where it doesn’t learn anything or, when it does, gets stuck
on a local maximum.

190 | Chapter 14: Generating Icons Using Deep Nets

14.10 Generating Icons Using an RNN
Problem
You’ve trained the network; now how do you get it to produce icons?

Solution
Feed the network some random bits of your test set and interpret the predictions as
drawing instructions.

The basic approach here is again the same as when we were generating Shakespear‐
ean text or Python code; the only difference is that we need to feed the predictions
into the icon decoder to get icons out. Let’s first run some predictions:

def generate_icons(model, num=2, diversity=1.0):
 start_index = random.randint(0, len(x_test) - CHUNK_SIZE - 1)
 generated = x_test[start_index: start_index + CHUNK_SIZE]
 while num > 0:
 x = np.zeros((1, len(generated), 34))
 for t, char in enumerate(generated):
 x[0, t, char] = 1.
 preds = model.predict(x, verbose=0)[0]
 preds = np.asarray(preds[len(generated) - 1]).astype('float64')
 exp_preds = np.exp(np.log(preds) / diversity)

The diversity parameter controls how far the predictions are from deterministic
(which the model will turn into if diversity is 0). We need this to generate diverse
icons, but also to avoid getting stuck in a loop.

We’ll collect each prediction in a variable, so_far, which we flush every time we
encounter the value 33 (end of icon). We also check whether the y value is in range—
the model learns more or less the size of the icons, but will sometimes try to color
outside of the lines:

 if next_index == 33:
 icon = PIL.Image.new('L', (32, 32), 'white')
 for x, y in decode_icon(sofar, 32):
 if y < 32:
 icon.putpixel((x, y), 0)
 yield icon
 num -= 1
 else:
 sofar.append(next_index)

With this, we can now draw a “poster” of icons:

cols = 10
rows = 10
overview = PIL.Image.new('RGB',

14.10 Generating Icons Using an RNN | 191

 (cols * 36 + 4, rows * 36 + 4),
 (128, 128, 128))
for idx, icon in enumerate(generate_icons(model, num=cols * rows)):
 x = idx % cols
 y = idx // cols
 overview.paste(icon, (x * 36 + 4, y * 36 + 4))
overview

Discussion
The icons generated using the RNN are the boldest of the three attempts we under‐
took in this chapter and arguably capture the nature of iconness best. The model
learns symmetry and the basic shapes found in icons and even occasionally dithers to
get a notion of halftones across.

We could try to combine the different approaches in this chapter. For example,
instead of trying to predict the next drawing instruction, we could have an RNN that
takes in the drawing instructions, capture the latent state at that point, and then have
a second RNN based on that state reconstruct the drawing instructions. This way we
would have an RNN-based autoencoder. In the text world there have been some suc‐
cesses in this area.

RNNs can also be combined with GANs. Instead of having a generator network that
takes a latent variable and upscales it into an icon, we’d use an RNN to generate draw‐
ing instructions and then have the discriminator network decide whether these are
real or fake.

192 | Chapter 14: Generating Icons Using Deep Nets

CHAPTER 15

Music and Deep Learning

The other chapters in this book are all about processing of images or texts. Those
chapters represent the balance of media in deep learning research, but that is not to
say that sound processing isn’t interesting and that we haven’t seen some great devel‐
opments in this area in the last few years. Speech recognition and speech synthesis are
what made home assistants like Amazon Alexa and Google Home a possibility. The
old sitcom joke where the phone dials the wrong number hasn’t really been current
since Siri came out.

It is easy to start experimenting with these systems; there are APIs out there that let
you get a simple voice app up and running in a few hours. The voice processing, how‐
ever, is done in Amazon, Google, or Apple’s data center, so we can’t really count these
as deep learning experiments. Building state-of-the-art voice recognition systems is
hard, although Mozilla’s Deep Speech is making some impressive progress.

This chapter focuses on music. We’ll start out with training a music classification
model that can tell us what music we’re listening to. We’ll then use the results of this
model to index local MP3s, making it possible to find songs similar in style. After that
we’ll use the Spotify API to create a corpus of public playlists that we’ll use to train a
music recommender.

The notebooks for this chapter are:

15.1 Song Classification
15.2 Index Local MP3s
15.3 Spotify Playlists
15.4 Train a Music Recommender

193

15.1 Creating a Training Set for Music Classification
Problem
How do you get and prepare a set of music for classification?

Solution
Create spectrograms from the test set provided by the University of Victoria in
Canada.

You could try to do this by plugging in that dusty external drive with your MP3 col‐
lection on it and relying on the tags on those songs. But a lot of those tags may be
somewhat random or missing, so it’s best to get started with a training set from a sci‐
entific institution that is nicely labeled:

wget http://opihi.cs.uvic.ca/sound/genres.tar.gz
tar xzf genres.tar.gz

This should get us a directory, genres, with subdirectories containing music of differ‐
ent genres:

>ls ~/genres
blues classical country disco hiphop jazz metal pop reggae rock

Those directories contain sound files (.au), 100 clips per genre, each 29 seconds long.
We could try to feed the raw sound frames directly into the network and maybe an
LSTM would pick up something, but there are better ways of preprocessing sounds.
Sound is really sound waves, but we don’t hear waves. Instead, we hear tones of a cer‐
tain frequency.

So a good way to make our network behave more like our hearing works is to convert
sound into blocks of spectrograms; each sample will be represented by a series of
audio freqencies and their respective intensities. The librosa library for Python has
some standard functions for this and also provides what’s called a melspectrogram, a
type of spectrogram that is meant to closely emulate how human hearing works. So
let’s load up the music and convert the fragments to melspectrograms:

def load_songs(song_folder):
 song_specs = []
 idx_to_genre = []
 genre_to_idx = {}
 genres = []
 for genre in os.listdir(song_folder):
 genre_to_idx[genre] = len(genre_to_idx)
 idx_to_genre.append(genre)
 genre_folder = os.path.join(song_folder, genre)
 for song in os.listdir(genre_folder):
 if song.endswith('.au'):

194 | Chapter 15: Music and Deep Learning

 signal, sr = librosa.load(
 os.path.join(genre_folder, song))
 melspec = librosa.feature.melspectrogram(
 signal, sr=sr).T[:1280,]
 song_specs.append(melspec)
 genres.append(genre_to_idx[genre])
 return song_specs, genres, genre_to_idx, idx_to_genre

Let’s also have a quick look at some of the genres as spectrograms. Since those spec‐
trograms are now just matrices, we can treat them as bitmaps. They are really quite
sparse, so we are going to overexpose them to see more details:

def show_spectogram(show_genre):
 show_genre = genre_to_idx[show_genre]
 specs = []
 for spec, genre in zip(song_specs, genres):
 if show_genre == genre:
 specs.append(spec)
 if len(specs) == 25:
 break
 if not specs:
 return 'not found!'
 x = np.concatenate(specs, axis=1)
 x = (x - x.min()) / (x.max() - x.min())
 plt.imshow((x *20).clip(0, 1.0))

show_spectogram('classical')

15.1 Creating a Training Set for Music Classification | 195

show_spectogram('metal')

Even though it is hard to say what exactly the pictures mean, there is some suggestion
that metal has more of a rigid structure than classical music, which is maybe not
completely unexpected.

Discussion
As we’ve seen throughout this book, preprocessing data before letting networks do
their thing increases our chances of success significantly. When it comes to sound
processing, librosa has functions for almost anything you could wish for, from load‐
ing sound files and playing them inside notebooks to visualizing them and doing any
kind of preprocessing.

Visually inspecting spectrograms doesn’t tell us much, but it does give us a hint that
they are different for different genres of music. We’ll see in the next recipe whether a
network can learn to distinguish between them too.

15.2 Training a Music Genre Detector
Problem
How do you set up and train a deep network to detect music genres?

Solution
Use a one-dimensional convolutional network.

We’ve used convolutional networks in this book for image detection (see Chapter 9)
and for text (see Chapter 7). It might seem that treating our spectrograms as images
would be the more logical way to proceed, but we are actually going to go with a one-

196 | Chapter 15: Music and Deep Learning

dimensional convolutional network. Each frame in our spectrogram represents a
frame of music. Using a convolutional net to convert stretches of time into a more
abstract representation makes sense when we try to classify genres; reducing the
“height” of the frames is less intuitively sensible.

We’ll start by stacking some layers on top of each other. This will reduce the size of
our input from 128 dimensions wide to 25. The GlobalMaxPooling layer will then
make this into a 128-float vector:

inputs = Input(input_shape)
x = inputs
for layers in range(3):
x = Conv1D(128, 3, activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling1D(pool_size=6, strides=2)(x)
x = GlobalMaxPooling1D()(x)

This is followed by a few fully connected layers to get to the labels:

for fc in range(2):
x = Dense(256, activation='relu')(x)
 x = Dropout(0.5)(x)

 outputs = Dense(10, activation='softmax')(x)

Before we feed our data into the model, we’ll split each song into 10 fragments of 3
seconds each. We do this to increase the amount of data, since 1,000 songs isn’t really
that much:

def split_10(x, y):
 s = x.shape
 s = (s[0] * 10, s[1] // 10, s[2])
 return x.reshape(s), np.repeat(y, 10, axis=0)

genres_one_hot = keras.utils.to_categorical(
 genres, num_classes=len(genre_to_idx))

x_train, x_test, y_train, y_test = train_test_split(
 np.array(song_specs), np.array(genres_one_hot),
 test_size=0.1, stratify=genres)

x_test, y_test = split_10(x_test, y_test)
x_train, y_train = split_10(x_train, y_train)

Training this model gives us accuracy of around 60% after 100 epochs, which is not
bad, but certainly not superhuman. We can improve upon this result by taking
advantage of the fact that we split each song into 10 fragments and use the informa‐
tion across the chunks to get to a result. Majority voting would be one strategy, but it
turns out that going with whatever chunk the model is most sure of works even bet‐
ter. We can do this by splitting the data back into 100 chunks and applying argmax on

15.2 Training a Music Genre Detector | 197

each of them. This will get us for each one the index in the entire chunk. By applying
modulo 10 we get the index into our label set:

def unsplit(values):
 chunks = np.split(values, 100)
 return np.array([np.argmax(chunk) % 10 for chunk in chunks])

predictions = unsplit(model.predict(x_test))
truth = unsplit(y_test)
accuracy_score(predictions, truth)

This gets us up to 75% accuracy.

Discussion
With 100 songs for each of our 10 genres, we don’t have a lot of training data. Split‐
ting our songs up into 10 chunks of 3 seconds each gets us to somewhere half decent,
although our model still ends up overfitting a bit.

One thing to explore would be to apply some data augmentation techniques. We
could try adding noise to the music, speeding it up a bit, or slowing it down though
the spectrogram itself might not really change that much. It would be better to get our
hands on a larger set of music.

15.3 Visualizing Confusion
Problem
How do you show the mistakes that the network makes in a clear way?

Solution
Graphically display a confusion matrix.

A confusion matrix has columns for each of the genres representing the truth and
rows for the genres the model predicted. The cells contain the counts for each (truth,
prediction) pair. sklearn comes with a handy method to calculate it:

cm = confusion_matrix(pred_values, np.argmax(y_test, axis=1))
print(cm)

[[65 13 0 6 5 1 4 5 2 1]
 [13 54 1 3 4 0 20 1 0 9]
 [5 2 99 0 0 0 12 33 0 2]
 [0 0 0 74 29 1 8 0 18 10]
 [0 0 0 2 55 0 0 1 2 0]
 [1 0 0 1 0 95 0 0 0 6]
 [8 17 0 2 5 2 45 0 1 4]
 [4 4 0 1 2 0 10 60 1 4]
 [0 1 0 1 0 1 0 0 64 5]
 [4 9 0 10 0 0 1 0 12 59]]

198 | Chapter 15: Music and Deep Learning

We can visualize this a bit more clearly by shading the matrix. Transposing the matrix
so we can see the confusion per row also makes things a bit easier to process:

plt.imshow(cm.T, interpolation='nearest', cmap='gray')
plt.xticks(np.arange(0, len(idx_to_genre)), idx_to_genre)
plt.yticks(np.arange(0, len(idx_to_genre)), idx_to_genre)

plt.show()

Discussion
Confusion matrices are a neat way to display the performance of a network, but they
also give you an idea of where it goes wrong, which might hint at how to improve
things. In the example in this recipe we can see that the network does very well at
distinguishing classical music and metal from other types of music, but it does less
well at distinguishing rock from country. None of this is unexpected, of course.

15.4 Indexing Existing Music
Problem
You’d like to build an index over pieces of music that captures their style.

15.4 Indexing Existing Music | 199

Solution
Treat the last fully connected layer of the model as an embedding layer.

In Chapter 10 we built a reverse search engine for images by interpreting the last fully
connected layer of an image recognition network as image embeddings. We can do
something similar with music. Let’s start by collecting some MP3s—you probably
have a collection of them lying around somewhere:

MUSIC_ROOT = _</path/to/music>_
mp3s = []
for root, subdirs, files in os.walk(MUSIC_ROOT):
 for fn in files:
 if fn.endswith('.mp3'):
 mp3s.append(os.path.join(root, fn))

Then we’ll index them. As before, we extract a melspectrogram. We also fetch the
MP3 tags:

def process_mp3(path):
 tag = TinyTag.get(path)
 signal, sr = librosa.load(path,
 res_type='kaiser_fast',
 offset=30,
 duration=30)
 melspec = librosa.feature.melspectrogram(signal, sr=sr).T[:1280,]
 if len(melspec) != 1280:
 return None
 return {'path': path,
 'melspecs': np.asarray(np.split(melspec, 10)),
 'tag': tag}

songs = [process_mp3(path) for path in tqdm(mp3s)]
songs = [song for song in songs if song]

We want to index every spectrogram of all MP3s—we can do that in one batch if we
concatenate all of them together:

inputs = []
for song in songs:
 inputs.extend(song['melspecs'])
inputs = np.array(inputs)

To get to the vector representation, we’ll construct a model that returns the fourth-to-
last layer from our previous model and run it over the collected spectra:

cnn_model = load_model('zoo/15/song_classify.h5')
vectorize_model = Model(inputs=cnn_model.input,
 outputs=cnn_model.layers[-4].output)
vectors = vectorize_model.predict(inputs)

200 | Chapter 15: Music and Deep Learning

A simple nearest neighbor model lets us now find similar songs. Given a song, we’ll
look up for each of its vectors what the other nearest vectors are. The very first result
we can skip, since it is the vector itself:

nbrs = NearestNeighbors(n_neighbors=10, algorithm='ball_tree').fit(vectors)
def most_similar_songs(song_idx):
 distances, indices = nbrs.kneighbors(
 vectors[song_idx * 10: song_idx * 10 + 10])
 c = Counter()
 for row in indices:
 for idx in row[1:]:
 c[idx // 10] += 1
 return c.most_common()

Trying this out on a random song seems to work:

song_idx = 7
print(songs[song_idx]['path'])

print('---')
for idx, score in most_similar_songs(song_idx)[:5]:
 print(songs[idx]['path'], score)
print('')

00 shocking blue - Venus (yes the.mp3

00 shocking blue - Venus (yes the.mp3 20
The Shocking Blue/Have A Nice Day_ Vol 1/00 Venus.mp3 12
The Byrds/00 Eve of Destruction.mp3 12
Goldfinger _ Weezer _ NoFx _ L/00 AWESOME.mp3 6

Indexing songs using the last fully connected layer of our model works reasonably
well. In this example it not only finds the original song, but also a slightly different
version of that song that happens to be in the MP3 collection. Whether the other two
songs returned are really similar in style is a judgment call, but they are not com‐
pletely different.

The code here could be used as a basis to build something like Shazam; record a bit of
music, run that through our vectorizer, and see which indexed song it matches most
closely. Shazam’s algorithm is different and predates the popularity of deep learning.

By taking a short bit of music and finding other music that sounds similar, we have
the basics for a music recommender system. The fact that it only works for music we
already have access to does limit its usefulness a bit, though. In the rest of this chapter
we’ll look at another approach to building a music recommender system.

15.4 Indexing Existing Music | 201

15.5 Setting Up Spotify API Access
Problem
How can you get access to a large set of music data?

Solution
Use the Spotify API.

The system we created in the previous recipe is a sort of music recommender, but it
only recommends songs it has already seen. By harvesting playlists and songs from
the Spotify API we can build up a much larger training set. Let’s start by registering a
new app at Spotify. Head over to https://beta.developer.spotify.com/dashboard/applica
tions, and create a new application.

The URL mentioned here starts with beta. By the time you are
reading this, the new application interface on Spotify might have
come out of beta and the URL might have changed.

You’ll need to log in first and possibly register before that. Once you’ve created an
app, go to the app page and note the Client ID and the Client Secret. Since the secret
is, well, secret, you’ll need to press the button to show it.

Enter your various details in three constants:

CLIENT_ID = '<your client id>'
CLIENT_SECRET = '<your secret>'
USER_ID = '<your user id>'

You can now access the Spotify API:

uri = 'http://127.0.0.1:8000/callback'
token = util.prompt_for_user_token(USER_ID, '',
 client_id=CLIENT_ID,
 client_secret=CLIENT_SECRET,
 redirect_uri=uri)
session = spotipy.Spotify(auth=token)

The first time you run this code, the API will ask you to enter a URL into a browser.
This works somewhat awkwardly when run from a notebook; the URL to redirect to
will be printed in the window where your notebook server runs. However, if you
press the Stop button in the browser, it will show you the URL to redirect to. Click on
that URL. It will redirect to something starting with http://127.0.0.1 that won’t
resolve, but that doesn’t matter. Enter that URL back into the box that now shows up
in the notebook page and press Enter. This should authorize you.

202 | Chapter 15: Music and Deep Learning

https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications

You only need to do this once; the token gets stored locally in a file named .cache-
<username>. If something goes wrong, delete this file and try again.

Discussion
The Spotify API is a remarkably great source for musical data. The API is accessible
through a nicely designed REST API with well-defined endpoints that return self-
describing JSON documents.

The API documentation has information on how to access songs, artists, and play‐
lists, including rich metainformation like album covers.

15.6 Collecting Playlists and Songs from Spotify
Problem
You need to create a training set for your music recommender.

Solution
Search for common words to find playlists and fetch the songs that belong to them.

As rich as the Spotify API is, there is no easy way to get a set of public playlists. You
can search for them by word, though. In this recipe we’ll use that as a way to get
access to a nice body of playlists. Let’s start by implementing a function to fetch all
playlists matching a search term. The only complication in the code is due to the fact
that we need to recover from timeouts and other errors:

def find_playlists(session, w, max_count=5000):
 try:
 res = session.search(w, limit=50, type='playlist')
 while res:
 for playlist in res['playlists']['items']:
 yield playlist
 max_count -= 1
 if max_count == 0:
 raise StopIteration
 tries = 3
 while tries > 0:
 try:
 res = session.next(res['playlists'])
 tries = 0
 except SpotifyException as e:
 tries -= 1
 time.sleep(0.2)
 if tries == 0:
 raise
 except SpotifyException as e:
 status = e.http_status

15.6 Collecting Playlists and Songs from Spotify | 203

https://developer.spotify.com/web-api/

 if status == 404:
 raise StopIteration
 raise

We’ll start with one word, “a,” and fetch 5,000 playlists that contain that word. We’ll
keep track of all those playlists, but also count the words that occur in the titles of
those playlists. That way when we’re done with the word “a,” we can do the same with
the word that occurs most. We can keep doing this until we have enough playlists:

while len(playlists) < 100000:
 for word, _ in word_counts.most_common():
 if not word in words_seen:
 words_seen.add(word)
 print('word>', word)
 for playlist in find_playlists(session, word):
 if playlist['id'] in playlists:
 dupes += 1
 elif playlist['name'] and playlist['owner']:
 playlists[playlist['id']] = {
 'owner': playlist['owner']['id'],
 'name': playlist['name'],
 'id': playlist['id'],
 }
 count += 1
 for token in tokenize(playlist['name'],
 lowercase=True):
 word_counts[token] += 1
 break

The playlists we fetched don’t actually contain the songs; for this we need to do a sep‐
arate call. To get all the tracks of a playlist, use:

def track_yielder(session, playlist):
 res = session.user_playlist_tracks(playlist['owner'], playlist['id'],
 fields='items(track(id, name, artists(name, id), duration_ms)),next')
 while res:
 for track in res['items']:
 yield track['track']['id']
 res = session.next(res)
 if not res or not res.get('items'):
 raise StopIteration

Getting a large set of songs and playlists can take a significant amount of time. To get
some decent results, we need at least 100,000 playlists, but something closer to a mil‐
lion would be better. Getting 100,000 playlists and their songs takes about 15 hours
on a decent connection—it’s doable, but not something you’d want to do over and
over again, so we’d better save the results.

We are going to store three datasets. The first contains the playlist information itself
—we don’t actually need this for the next recipe, but it is useful to check things.
Secondly, we’ll store the IDs of the songs in the playlists in a big text file. And finally,

204 | Chapter 15: Music and Deep Learning

we’ll store the per-song information. We’ll want to be able to look up these details in a
dynamic fashion, so we’re going to use a SQLite database for this. We’ll write out the
results as we collect song information to keep memory usage under control:

conn = sqlite3.connect('data/songs.db')
c = conn.cursor()
c.execute('CREATE TABLE songs '
 '(id text primary key, name text, artist text)')
c.execute('CREATE INDEX name_idx on songs(name)')

tracks_seen = set()
with open('data/playlists.ndjson', 'w') as fout_playlists:
 with open('data/songs_ids.txt', 'w') as fout_song_ids:
 for playlist in tqdm.tqdm(playlists.values()):
 fout_playlists.write(json.dumps(playlist) + '\n')
 track_ids = []
 for track in track_yielder(session, playlist):
 track_id = track['id']
 if not track_id:
 continue
 if not track_id in tracks_seen:
 c.execute("INSERT INTO songs VALUES (?, ?, ?)",
 (track['id'], track['name'],
 track['artists'][0]['name']))
 track_ids.append(track_id)
 fout_song_ids.write(' '.join(track_ids) + '\n')
 conn.commit()
conn.commit()

Discussion
In this recipe we looked at building up a database of playlists and their songs. Since
there is no clear way to get a balanced sample of public playlists from Spotify, we took
the approach of using the search interface and trying popular keywords. While this
works, the set we’ve acquired is hardly unbiased.

For one thing, we get the popular keywords from the playlists that we fetched. This
does give us words that are relevant for music, but can easily increase the skewing we
already have. If we end up with playlists that are disproportionately about country
music then our word lists will also start to fill up with country-related words, which
in turn will have us fetch more country music.

The other bias risk is that fetching playlists that contain popular words will get us
popular songs. Terms like “greatest” and “hits” will occur often and cause us to get a
lot of greatest hits; niche albums have less of a chance to be picked up.

15.6 Collecting Playlists and Songs from Spotify | 205

15.7 Training a Music Recommender
Problem
You’ve fetched a large set of playlists, but how do you use them to train your music
recommender system?

Solution
Use an off-the-shelf Word2vec model and treat song IDs as words.

In Chapter 3 we explored how a Word2vec model projects words into a semantic
space with nice properties; similar words end up in the same neighborhood and rela‐
tions between words are somewhat consistent. In Chapter 4 we used an embedding
technique to build a movie recommender. In this recipe we combine both
approaches. Rather than training our own model, we’ll use an off-the-shelf model for
Word2vec, but we’ll use the results to build a recommender for music.

The gensim module we used in Chapter 3 also comes with the possibility to train a
model. All it needs is an iterator that produces series of tokens. This isn’t too hard
since we have our playlists stored as lines in a file, with each line containing the IDs
of the songs separated by spaces:

class WordSplitter(object):
 def __init__(self, filename):
 self.filename = filename

 def __iter__(self):
 with open(self.filename) as fin:
 for line in fin:
 yield line.split()

After that training the model is a single-line operation:

model = gensim.models.Word2Vec(model_input, min_count=4)

Depending on how many songs/playlists the previous recipe resulted in, this could
take a while. Let’s save the model for future use:

with open('zoo/15/songs.word2vec', 'wb') as fout:
 model.save(fout)

15.8 Recommending Songs Using a Word2vec Model
Problem
How do you use your model to predict songs based on an example?

206 | Chapter 15: Music and Deep Learning

Solution
Use the Word2vec distances and your SQLite3 database of songs.

The first step is to get a set of song_ids given a song name or part of it. The LIKE
operator will get us a selection of songs that match the searched-for pattern. Song
names, though, are hardly unique these days. Even for the same artists there are dif‐
ferent versions around. So we need some way of scoring them. Luckily, we can use the
vocab property of our model—the records in it have a count property. The more often
a song appears in our playlists, the more likely it is that it is the song we are after (or
at least the song we know most about):

conn = sqlite3.connect('data/songs.db')
def find_song(song_name, limit=10):
 c = conn.cursor()
 c.execute("SELECT * FROM songs WHERE UPPER(name) LIKE '%"
 + song_name + "%'")
 res = sorted((x + (model.wv.vocab[x[0]].count,)
 for x in c.fetchall() if x[0] in model.wv.vocab),
 key=itemgetter(-1), reverse=True)
 return [*res][:limit]

for t in find_song('the eye of the tiger'):
 print(*t)

2ZqGzZWWZXEyPxJy6N9QhG The eye of the tiger Chiara Mastroianni 39
4rr0ol3zvLiEBmep7HaHtx The Eye Of The Tiger Survivor 37
0R85QWa6KRzB8p44XXE7ky The Eye of the Tiger Gloria Gaynor 29
3GxdO4rTwVfRvLRIZFXJVu The Eye of the Tiger Gloria Gaynor 19
1W602jfZkdAsbabmJEYfFi The Eye of the Tiger Gloria Gaynor 5
6g197iis9V2HP7gvc5ZpGy I Got the Eye of the Tiger Circus Roar 5
00VQxzTLqwqBBE0BuCVeer The Eye Of The Tiger Gloria Gaynor 5
28FwycRDU81YOiGgIcxcPq The Eye of the Tiger Gloria Gaynor 5
62UagxK6LuPbqUmlygGjcU It's the Eye of the Tiger Be Cult 4
6lUHKc9qrIHvkknXIrBq6d The Eye Of The Tiger Survivor 4

Now we can pick the song we really are after, in this case possibly the one by Survivor.
Now on to suggesting songs. We let our model do the heavy lifting:

similar = dict(model.most_similar([song_id]))

Now we have a lookup table from song ID to score, which we can easily expand to a
list of actual songs:

song_ids = ', '.join(("'%s'" % x) for x in similar.keys())
c.execute("SELECT * FROM songs WHERE id in (%s)" % song_ids)
res = sorted((rec + (similar[rec[0]],) for rec in c.fetchall()),
 key=itemgetter(-1),
 reverse=True)

15.8 Recommending Songs Using a Word2vec Model | 207

The output for “The Eye of the Tiger” is:

Girls Just Wanna Have Fun Cyndi Lauper 0.9735351204872131
Enola Gay - Orchestral Manoeuvres In The Dark 0.9719518423080444
You're My Heart, You're My Soul Modern Talking 0.9589041471481323
Gold - 2003 Remastered Version Spandau Ballet 0.9566971659660339
Dolce Vita Ryan Paris 0.9553133249282837
Karma Chameleon - 2002 Remastered Version Culture Club 0.9531201720237732
Bette Davis Eyes Kim Carnes 0.9499865770339966
Walking On Sunshine Katrina & The Waves 0.9481900930404663
Maneater Daryl Hall & John Oates 0.9481032490730286
Don't You Want Me The Human League 0.9471924901008606

This looks like a decent mix of upbeat ’80s-ish music.

Discussion
Using Word2vec is an effective way to create a song recommender. Rather than train‐
ing our own model as we did in Chapter 4, we used an off-the-shelf model here from
gensim. There is less tuning, but it works well since the words in a sentence and songs
in a playlist are fairly comparable.

Word2vec works by trying to predict a word from its context. This prediction leads to
an embedding that causes words that are similar to each other to appear near each
other. Running the same process over songs in a playlist means trying to predict a
song based on the context of the song in the playlist. Similar songs end up near each
other in the song space.

With Word2vec it turns out that relations between words also have meaning. The
vector separating the words “queen” and “princess” is similar to the vector separating
“king” and “prince.” It would be interesting to see if something similar can be done
with songs—what is the Beatles version of “Paint It Black” by the Rolling Stones? This
would, however, require us to somehow project artists into the same space.

208 | Chapter 15: Music and Deep Learning

CHAPTER 16

Productionizing Machine Learning Systems

Building and training a model is one thing; deploying your model in a production
system is a different and often overlooked story. Running code in a Python notebook
is nice, but not a great way to serve web clients. In this chapter we’ll look at how to get
up and running for real.

We’ll start with embeddings. Embeddings have played a role in many of the recipes in
this book. In Chapter 3, we looked at the interesting things we can do with word
embeddings, like finding similar words by looking at their nearest neighbors or find‐
ing analogues by adding and subtracting embedding vectors. In Chapter 4, we used
embeddings of Wikipedia articles to build a simple movie recommender system. In
Chapter 10, we saw how we can treat the output of the final layer of a pretrained
image classification network as embeddings for the input image and use this to build
a reverse image search service.

Just as with these examples, we find that real-world cases often end with embeddings
for certain entities that we then want to query from a production-quality application.
In other words, we have a set of images, texts, or words and an algorithm that for
each produces a vector in a high-dimensional space. For a concrete application, we
want to be able to query this space.

We’ll start with a simple approach: we’ll build a nearest neighbor model and save it to
disk, so we can load it when we need it. We’ll then look at using Postgres for the same
purpose.

We’ll also explore using microservices as a way to expose machine learning models
using Flask as a web server and Keras’s ability to save and load models.

209

The following notebooks are available for this chapter:

16.1 Simple Text Generation
16.2 Prepare Keras Model for TensorFlow Serving
16.3 Prepare Model for iOS

16.1 Using Scikit-Learn’s Nearest Neighbors for
Embeddings
Problem
How do you quickly serve up the closest matches from an embedding model?

Solution
Use scikit-learn’s nearest neighbor’s algorithm and save the model into a file. We’ll
continue the code from Chapter 4, where we created a movie prediction model. After
we’ve run everything, we normalize the values and fit a nearest neighbor model:

movie = model.get_layer('movie_embedding')
movie_weights = movie.get_weights()[0]
movie_lengths = np.linalg.norm(movie_weights, axis=1)
normalized_movies = (movie_weights.T / movie_lengths).T
nbrs = NearestNeighbors(n_neighbors=10, algorithm='ball_tree').fit(
 normalized_movies)
with open('data/movie_model.pkl', 'wb') as fout:
 pickle.dump({
 'nbrs': nbrs,
 'normalized_movies': normalized_movies,
 'movie_to_idx': movie_to_idx
 }, fout)

We can then later load the model again with:

with open('data/movie_model.pkl', 'rb') as fin:
 m = pickle.load(fin)
movie_names = [x[0] for x in sorted(movie_to_idx.items(),
 key=lambda t:t[1])]
distances, indices = m['nbrs'].kneighbors(
 [m['normalized_movies'][m['movie_to_idx']['Rogue One']]])
for idx in indices[0]:
 print(movie_names[idx])

Rogue One
Prometheus (2012 film)
Star Wars: The Force Awakens
Rise of the Planet of the Apes
Star Wars sequel trilogy
Man of Steel (film)
Interstellar (film)
Superman Returns

210 | Chapter 16: Productionizing Machine Learning Systems

The Dark Knight Trilogy
Jurassic World

Discussion
The simplest way to productionize a machine learning model is to save it to disk after
the training is done and then to load it up when it is needed. All major machine
learning frameworks support this, including the ones we’ve used throughout this
book, Keras and scikit-learn.

This solution is great if you are in control of memory management. In a production
web server this is often not the case, however, and when you have to load a large
model into memory when a web request comes in, latency obviously suffers.

16.2 Use Postgres to Store Embeddings
Problem
You’d like to use Postgres to store embeddings.

Solution
Use the Postgres Cube extension.

The Cube extension allows for the handling of high-dimensional data, but it needs to
be enabled first:

CREATE EXTENSION cube;

Once that is done, we can create a table and corresponding index. To make it also
possible to search on movie names, we’ll create a text index on the movie_name field,
too:

DROP TABLE IF EXISTS movie;
CREATE TABLE movie (
 movie_name TEXT PRIMARY KEY,
 embedding FLOAT[] NOT NULL DEFAULT '{}'
);
CREATE INDEX movie_embedding ON movie USING gin(embedding);
CREATE INDEX movie_movie_name_pattern
 ON movie USING btree(lower(movie_name) text_pattern_ops);

Discussion
Postgres is a free database that is remarkably powerful, not least because of the large
number of extensions that are available. One of those modules is the cube module. As
the name suggests, it was originally meant to make 3-dimensional coordinates avail‐

16.2 Use Postgres to Store Embeddings | 211

able as a primitive, but it has since been extended to index arrays up to 100 dimen‐
sions.

Postgres has many extensions that are well worth exploring for anybody handling
sizeable amounts of data. In particular, the ability to store less-structured data in the
form of arrays and JSON documents inside of classical SQL tables comes in handy
when prototyping.

16.3 Populating and Querying Embeddings Stored in
Postgres
Problem
Can you store our model and query results in Postgres?

Solution
Use psycopg2 to connect to Postgres from Python.

Given a username/password/database/host combination we can easily connect to
Postgres using Python:

connection_str = "dbname='%s' user='%s' password='%s' host='%s'"
conn = psycopg2.connect(connection_str % (DB_NAME, USER, PWD, HOST))

Inserting our previously built model works like any other SQL operation in Python,
except that we need to cast our numpy array to a Python list:

with conn.cursor() as cursor:
 for movie, embedding in zip(movies, normalized_movies):
 cursor.execute('INSERT INTO movie (movie_name, embedding)'
 ' VALUES (%s, %s)',
 (movie[0], embedding.tolist()))
conn.commit()

Once this is done, we can query the values. In this case we take (part of) a title of a
movie, find the best match for that movie, and return the most similar movies:

def recommend_movies(conn, q):
 with conn.cursor() as cursor:
 cursor.execute('SELECT movie_name, embedding FROM movie'
 ' WHERE lower(movie_name) LIKE %s'
 ' LIMIT 1',
 ('%' + q.lower() + '%',))
 if cursor.rowcount == 0:
 return []
 movie_name, embedding = cursor.fetchone()
 cursor.execute('SELECT movie_name, '
 ' cube_distance(cube(embedding), '
 ' cube(%s)) as distance '

212 | Chapter 16: Productionizing Machine Learning Systems

 ' FROM movie'
 ' ORDER BY distance'
 ' LIMIT 5',
 (embedding,))
 return list(cursor.fetchall())

Discussion
Storing an embedding model in a Postgres database allows us to query it directly,
without having to load the model up on every request, and is therefore a good solu‐
tion when we want to use such a model from a web server—especially when our web
setup was Postgres-based to begin with, of course.

Running a model or the results of a model on the database server that is powering
your website has the added advantage that you can seamlessly mix ranking compo‐
nents. We could easily extend the code of this recipe to include the Rotten Tomatoes
ratings in our movies table, from which point on we could use this information to
help sort the returned movies. However, if the ratings and similarity distance come
from a different source, we would either have to do an in-memory join by hand or
return incomplete results.

16.4 Storing High-Dimensional Models in Postgres
Problem
How do you store a model with more than 100 dimensions in Postgres?

Solution
Use a dimension reduction technique.

Let’s say we wanted to load Google’s pretrained Word2vec model that we used in
Chapter 3 into Postgres. Since the Postgres cube extension (see Recipe 16.2) limits the
number of dimensions it will index to 100, we need to do something to make this fit.
Reducing the dimensionality using singular value decomposition (SVD)—a techni‐
que we met in Recipe 10.4—is a good option. Let’s load up the Word2vec model as
before:

model = gensim.models.KeyedVectors.load_word2vec_format(
 MODEL, binary=True)

The normalized vectors per word are stored in the syn0norm property, so we can run
the SVD over that. This does take a little while:

svd = TruncatedSVD(n_components=100, random_state=42,
 n_iter=40)
reduced = svd.fit_transform(model.syn0norm)

16.4 Storing High-Dimensional Models in Postgres | 213

We need to renormalize the vectors:

reduced_lengths = np.linalg.norm(reduced, axis=1)
normalized_reduced = reduced.T / reduced_lengths).T

Now we can look at the similarity:

def most_similar(norm, positive):
 vec = norm[model.vocab[positive].index]
 dists = np.dot(norm, vec)
 most_extreme = np.argpartition(-dists, 10)[:10]
 res = ((model.index2word[idx], dists[idx]) for idx in most_extreme)
 return list(sorted(res, key=lambda t:t[1], reverse=True))
for word, score in most_similar(normalized_reduced, 'espresso'):
 print(word, score)

espresso 1.0
cappuccino 0.856463080029
chai_latte 0.835657488972
latte 0.800340435865
macchiato 0.798796776324
espresso_machine 0.791469456128
Lavazza_coffee 0.790783985201
mocha 0.788645681469
espressos 0.78424218748
martini 0.784037414689

The results still look reasonable, but they are not exactly the same. The last entry,
martini, is somewhat unexpected in a list of caffeinated pick-me-ups.

Discussion
The Postgres cube extension is great, but comes with the caveat that it only works for
vectors that have 100 or fewer elements. The documentation helpfully explains this
limitation with: “To make it harder for people to break things, there is a limit of 100
on the number of dimensions of cubes.” One way around this restriction is to recom‐
pile Postgres, but that’s only an option if you directly control your setup. Also, it
requires you to keep doing this as new versions of the database come out.

Reducing the dimensionality before inserting our vectors into the database can easily
be done using the TruncatedSVD class. In this recipe we used the entire set of words
from the Word2vec dataset, which led to the loss of some precision. If we not only
reduce the dimensionality of the output but also cut down the number of terms, we
can do better. SVD can then find the most important dimensions for the data that we
provide, rather than for all the data. This can even help by generalizing a bit and
papering over a lack of data in our original input.

214 | Chapter 16: Productionizing Machine Learning Systems

16.5 Writing Microservices in Python
Problem
You’d like to write and deploy a simple Python microservice.

Solution
Build a minimal web app using Flask, returning a JSON document based on a REST
request.

First we need a Flask web server:

app = Flask(__name__)

We then define the service we want to offer. As an example, we’ll take in an image and
return the size of the image. We expect the image to be part of a POST request. If we
don’t get a POST request, we’ll return a simple HTML form so we can test the service
without a client. The @app.route decoration specifies that the return_size handles
any requests at the root, supporting both GET and POST:

@app.route('/', methods=['GET', 'POST'])
def return_size():
 if request.method == 'POST':
 file = request.files['file']
 if file:
 image = Image.open(file)
 width, height = image.size
 return jsonify(results={'width': width, 'height': height})
 return '''
 <h1>Upload new File</h1>
 <form action="" method=post enctype=multipart/form-data>
 <p><input type=file name=file>
 <input type=submit value=Upload>
 </form>
 '''

Now all we have to do is run the server at a port:

app.run(port=5050, host='0.0.0.0')

Discussion
REST was originally meant as a full-blown resource management framework that
assigns URLs to all resources in a system and then lets clients interact with the whole
spectrum of HTTP verbs, from PUT to DELETE. Like many APIs out there, we forego
all that in this example and just have a GET method defined on one handler that trig‐
gers our API and returns a JSON document.

16.5 Writing Microservices in Python | 215

The service we developed here is of course rather trivial; having a microservice for
just getting the size of an image is probably taking the concept a little too far. In the
next recipe we’ll explore how we can use this approach to serve up the results of a
previously developed machine learning model.

16.6 Deploying a Keras Model Using a Microservice
Problem
You want to deploy a Keras model as a standalone service.

Solution
Expand your Flask server to forward requests to a pretrained Keras model.

This recipe builds on the recipes in Chapter 10, where we downloaded thousands of
images from Wikipedia and fed them into a pretrained image recognition network,
getting back a 2,048-dimensional vector describing each image. We’ll fit a nearest
neighbor model on these vectors so that we can quickly find the most similar image,
given a vector.

The first step is to load the pickled image names and nearest neighbor model and
instantiate the pretrained model for image recognition:

with open('data/image_similarity.pck', 'rb') as fin:
 p = pickle.load(fin)
 image_names = p['image_names']
 nbrs = p['nbrs']
base_model = InceptionV3(weights='imagenet', include_top=True)
model = Model(inputs=base_model.input,
 outputs=base_model.get_layer('avg_pool').output)

We can now modify how we handle the incoming image by changing the bit of code
after if file:. We’ll resize the image to the target size of the model, normalize the
data, run the prediction, and find the nearest neighbors:

 img = Image.open(file)
 target_size = int(max(model.input.shape[1:]))
 img = img.resize((target_size, target_size), Image.ANTIALIAS)
 pre_processed = preprocess_input(
 np.asarray([image.img_to_array(img)]))
 vec = model.predict(pre_processed)
 distances, indices = nbrs.kneighbors(vec)
 res = [{'distance': dist,
 'image_name': image_names[idx]}
 for dist, idx in zip(distances[0], indices[0])]
 return jsonify(results=res)

216 | Chapter 16: Productionizing Machine Learning Systems

Feed it an image of a cat, and you should see a large number of cats sampled from the
Wikipedia images—with one photo of kids playing with a home computer thrown in.

Discussion
By loading the model on startup and then feeding in the images as they come in, we
can cut down on the latency that we would get if we followed the approach of the first
recipe in this section. We’re effectively chaining two models here, the pretrained
image recognition network and the nearest neighbor classifier, and exporting the
combination as one service.

16.7 Calling a Microservice from a Web Framework
Problem
You want to call a microservice from Django.

Solution
Use requests to call the microservice while handling the Django request. We can do
this along the lines of the following example:

def simple_view(request):
 d = {}
 update_date(request, d)
 if request.FILES.get('painting'):
 data = request.FILES['painting'].read()
 files = {'file': data}
 reply = requests.post('http://localhost:5050',
 files=files).json()
 res = reply['results']
 if res:
 d['most_similar'] = res[0]['image_name']
 return render(request, 'template_path/template.html', d)

Discussion
The code here is from a Django request handler, but things should look really similar
in other web frameworks, even ones based on a different language than Python.

The key thing here is that we separate the session management of the web framework
from the session management of our microservice. This way we know that at any
given time there is exactly one instance of our model, which makes latency and mem‐
ory use predictable.

Requests is a straightforward module for making HTTP calls. It doesn’t support mak‐
ing async calls, though. In the code for this recipe that isn’t important, but if we need

16.7 Calling a Microservice from a Web Framework | 217

to call multiple services, we’d want to do that in parallel. There are a number of
options for this, but they all fall into the pattern where we fire off calls to the back‐
ends at the beginning of our request, do the processing we need to, and then, when
we need the results, wait on the outstanding requests. This is a good setup for build‐
ing high-performance systems using Python.

16.8 TensorFlow seq2seq models
Problem
How do you productionize a seq2seq chat model?

Solution
Run a TensorFlow session with an output-capturing hook.

The seq2seq model that Google published is a very nice way to quickly develop
sequence-to-sequence models, but out of the box the inference phase can only be run
using stdin and stdout. It’s entirely possible to call out from our microservice this
way, but that means we’ll incur the latency cost of loading the model up on every call.

A better way is to instantiate the model manually and capture the output using a
hook. The first step is to reinstate the model from the checkpoint directory. We need
to load both the model and the model configuration. The model feeds in the
source_tokens (i.e., the chat prompt) and we’ll use a batch size of 1, since we’ll do
this in an interactive fashion:

checkpoint_path = tf.train.latest_checkpoint(model_path)
train_options = training_utils.TrainOptions.load(model_path)
model_cls = locate(train_options.model_class) or \
 getattr(models, train_options.model_class)
model_params = train_options.model_params
model = model_cls(
 params=model_params,
 mode=tf.contrib.learn.ModeKeys.INFER)
source_tokens_ph = tf.placeholder(dtype=tf.string, shape=(1, None))
source_len_ph = tf.placeholder(dtype=tf.int32, shape=(1,))
model(
 features={
 "source_tokens": source_tokens_ph,
 "source_len": source_len_ph
 },
 labels=None,
 params={
 }
)

218 | Chapter 16: Productionizing Machine Learning Systems

The next step is to set up the TensorFlow session that allows us to feed data into the
model. This is all fairly boilerplate stuff (and should make us appreciate frameworks
like Keras even more):

 saver = tf.train.Saver()
 def _session_init_op(_scaffold, sess):
 saver.restore(sess, checkpoint_path)
 tf.logging.info("Restored model from %s", checkpoint_path)
 scaffold = tf.train.Scaffold(init_fn=_session_init_op)
 session_creator = tf.train.ChiefSessionCreator(scaffold=scaffold)
 sess = tf.train.MonitoredSession(
 session_creator=session_creator,
 hooks=[DecodeOnce({}, callback_func=_save_prediction_to_dict)])
 return sess, source_tokens_ph, source_len_pht

We’ve now configured a TensorFlow session with a hook to DecodeOnce, which is a
class that implements the basic functionality of the inference task but then, when it is
done, calls the provided callback function to return the actual results.

In the code for seq2seq_server.py we can then use this to handle an HTTP request as
follows:

@app.route('/', methods=['GET'])
def handle_request():
 input = request.args.get('input', '')
 if input:
 tf.reset_default_graph()
 source_tokens = input.split() + ["SEQUENCE_END"]
 session.run([], {
 source_tokens_ph: [source_tokens],
 source_len_ph: [len(source_tokens)]
 })
 return prediction_dict.pop(_tokens_to_str(source_tokens))

This will let us handle seq2seq calls from a simple web server.

Discussion
The way we feed data into the seq2seq TensorFlow model in this recipe is not very
pretty, but it is effective and in terms of performance a much better option than using
stdin and stdout. Hopefully an upcoming version of this library will provide us with
a nicer way to use these models in production, but for now this will have to do.

16.9 Running Deep Learning Models in the Browser
Problem
How do you run a deep learning web app without a server?

16.9 Running Deep Learning Models in the Browser | 219

Solution
Use Keras.js to run the model in the browser.

Running a deep learning model in the browser sounds crazy. Deep learning needs lots
of processing power, and we all know that JavaScript is slow. But it turns out that you
can run models in the browser at a decent speed with GPU acceleration. Keras.js has a
tool to convert Keras models to something that the JavaScript runtime can work with,
and it uses WebGL to get the GPU to help with this. It’s an amazing bit of engineering
and it comes with some impressive demos. Let’s try this on one of our own models.

The notebook 16.1 Simple Text Generation is taken from the Keras example
directory and trains a simple text generation model based on the writings of Nietz‐
sche. After training we save the model with:

model.save('keras_js/nietzsche.h5')
with open('keras_js/chars.js', 'w') as fout:
 fout.write('maxlen = ' + str(maxlen) + '\n')
 fout.write('num_chars = ' + str(len(chars)) + '\n')
 fout.write('char_indices = ' + json.dumps(char_indices, indent=2) + '\n')
 fout.write('indices_char = ' + json.dumps(indices_char, indent=2) + '\n')

Now we need to convert the Keras model to the Keras.js format. First get the conver‐
sion code using:

git clone https://github.com/transcranial/keras-js.git

Now open a shell and, in the directory where you saved the model, execute:

python <git-root>/keras-js/python/encoder.py nietzsche.h5

This should give you a nietzsche.bin file.

The next step is to use this file from a web page.

We’ll do this in the file nietzsche.html, which you’ll find in the keras_js directory of
the deep_learning_cookbook repository. Let’s take a look. It starts with code to load the
Keras.js library and the variables we saved from Python:

<script src="https://unpkg.com/keras-js"></script>
<script src="chars.js"></script>

At the bottom we have a very simple bit of HTML that lets the user enter some text
and then press a button to run the model to extend the text in a Nietzschean way:

<textarea cols="60" rows="4" id="textArea">
 i am all for progress, it is
</textarea>

<button onclick="runModel(250)" disabled id="buttonGo">Go!</button>

Now let’s load the model and, when it’s done, enable the currently disabled button
buttonGo:

220 | Chapter 16: Productionizing Machine Learning Systems

https://transcranial.github.io/keras-js/#

const model = new KerasJS.Model({
 filepath: 'sayings.bin',
 gpu: true
 })

 model.ready().then(() => {
 document.getElementById("buttonGo").disabled = false
 })

In runModel we first need to one-hot encode the text data using the char_indices we
imported before:

 function encode(st) {
 var x = new Float32Array(num_chars * st.length);
 for(var i = 0; i < st.length; i++) {
 idx = char_indices[ch = st[i]];
 x[idx + i * num_chars] = 1;
 }
 return x;
 };

We can now run the model with:

return model.predict(inputData).then(outputData => {
 ...
 ...
 })

The outputData variable will contain a probability distribution for each of the char‐
acters in our vocabulary. The easiest way to make sense of that is to pick just the char‐
acter with the highest probability:

 var maxIdx = -1;
 var maxVal = 0.0;
 for (var idx = 0; idx < output.length; idx ++) {
 if (output[idx] > maxVal) {
 maxVal = output[idx];
 maxIdx = idx;
 }
 }

Now we just add that character to what we had so far and do the same thing again:

 var nextChar = indices_char["" + maxIdx];
 document.getElementById("textArea").value += nextChar;
 if (steps > 0) {
 runModel(steps - 1);
 }

Discussion
Being able to run models straight in the browser creates entirely new possibilities for
productionalizing. It means you don’t need a server to do the actual calculations, and

16.9 Running Deep Learning Models in the Browser | 221

with WebGL you even get GPU acceleration for free. Check out the fun demos at
https://transcranial.github.io/keras-js.

There are limitations to this approach. To use the GPU, Keras.js uses WebGL 2.0.
Unfortunately, not all browsers support this at the moment. Moreover, tensors are
encoded as WebGL textures, which are limited in size. The actual limit depends on
your browser and hardware. You can of course fall back to CPU only, but that means
running in pure JavaScript.

A second limitation is the size of the models. Production-quality models often have
sizes of tens of megabytes, which isn’t a problem at all when they are loaded up once
on the server but might create issues when they need to be sent to a client.

The encoder.py script has a flag called --quantize that will encode
the weights of the model as 8-bit integers. This reduces the size of
the model by 75%, but it means the weights will be less precise,
which might hurt prediction accuracy.

16.10 Running a Keras Model Using TensorFlow Serving
Problem
How do you run a Keras model using Google’s state-of-the art server?

Solution
Convert the model and invoke the TensorFlow Serving toolkit to write out the model
spec so you can run it using TensorFlow Serving.

TensorFlow Serving is part of the TensorFlow platform; according to Google it’s a
flexible, high-performance serving system for machine learning models, designed for
production environments.

Writing out a TensorFlow model in a way that TensorFlow Serving will work with is
somewhat involved. Keras models need even more massaging in order for this to
work. In principle, any model can be used as long as the model has only one input
and only one output—a restriction that comes with TensorFlow Serving. Another is
that TensorFlow Serving only supports Python 2.7.

The first thing to do is recreate the model as a testing-only model. Models behave dif‐
ferently during training and testing. For example, the Dropout layer only randomly
drops neurons while training—during testing everything is used. Keras hides this
from the user, passing the learning phase in as an extra variable. If you see errors stat‐
ing that something is missing from your input, this is probably it. We’ll set the learn‐

222 | Chapter 16: Productionizing Machine Learning Systems

https://transcranial.github.io/keras-js

ing phase to 0 (false) and extract the config and the weights from our character CNN
model:

K.set_learning_phase(0)
char_cnn = load_model('zoo/07.2 char_cnn_model.h5')
config = char_cnn.get_config()
if not 'config' in config:
 config = {'config': config,
 'class_name': 'Model'}

weights = char_cnn.get_weights()

At this point it might be useful to run a prediction on the model so we can later see
that it still works:

tweet = ("There's a house centipede in my closet and "
 "since Ryan isn't here I have to kill it....")
encoded = np.zeros((1, max_sequence_len, len(char_to_idx)))
for idx, ch in enumerate(tweet):
 encoded[0, idx, char_to_idx[ch]] = 1

res = char_cnn.predict(encoded)
emojis[np.argmax(res)]

u'\ude03'

We can then rebuild the model with:

new_model = model_from_config(config)
new_model.set_weights(weights)

In order for the model to run, we need to provide TensorFlow Serving with the input
and output spec:

input_info = utils.build_tensor_info(new_model.inputs[0])
output_info = utils.build_tensor_info(new_model.outputs[0])
prediction_signature = signature_def_utils.build_signature_def(
 inputs={'input': input_info},
 outputs={'output': output_info},
 method_name=signature_constants.PREDICT_METHOD_NAME)

We can then construct the builder object to define our handler and write out the
definition:

outpath = 'zoo/07.2 char_cnn_model.tf_model/1'
shutil.rmtree(outpath)

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder = tf.saved_model.builder.SavedModelBuilder(outpath)
builder.add_meta_graph_and_variables(
 sess, [tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 'emoji_suggest': prediction_signature,
 },

16.10 Running a Keras Model Using TensorFlow Serving | 223

 legacy_init_op=legacy_init_op)
builder.save()

Now we run the server with:

tensorflow_model_server \
 --model_base_path="char_cnn_model.tf_model/" \
 --model_name="char_cnn_model"

You can either get the binaries directly from Google or build them from source—see
the installation instructions for details.

Let’s see if we can call the model from Python. We’ll instantiate a prediction request
and use grpc to make a call:

request = predict_pb2.PredictRequest()
request.model_spec.name = 'char_cnn_model'
request.model_spec.signature_name = 'emoji_suggest'
request.inputs['input'].CopyFrom(tf.contrib.util.make_tensor_proto(
 encoded.astype('float32'), shape=[1, max_sequence_len, len(char_to_idx)]))

channel = implementations.insecure_channel('localhost', 8500)
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
result = stub.Predict(request, 5)

Get the actual predicted emojis:

response = np.array(result.outputs['output'].float_val)
prediction = np.argmax(response)
emojis[prediction]

Discussion
TensorFlow Serving is the way to productionize models blessed by Google but using
it with a Keras model is somewhat involved compared to bringing up a custom Flask
server and handling the input and output ourselves.

It does have advantages, though. For one thing, since is not custom, these servers all
behave the same. Furthermore, it is an industrial-strength server that supports ver‐
sioning and can load models straight from a number of cloud providers.

16.11 Using a Keras Model from iOS
Problem
You’d like to use a model trained on the desktop from a mobile app on iOS.

Solution
Use CoreML to convert your model and talk to it directly from Swift.

224 | Chapter 16: Productionizing Machine Learning Systems

https://www.tensorflow.org/serving/setup

This recipe describes how to build an app for iOS, so you’ll need a
Mac with Xcode installed to run the example. Moreover, since the
example uses the camera for detection, you’ll also need an iOS
device with a camera to try it out.

The first thing to do is to convert the model. Unfortunately Apple’s code only sup‐
ports Python 2.7 and also seems to lag a bit when it comes to supporting the latest
versions of tensorflow and keras, so we’ll set specific versions. Open a shell to set up
Python 2.7 with the right requirements and type in:

virtualenv venv2
source venv2/bin/activate
pip install coremltools
pip install h5py
pip install keras==2.0.6
pip install tensorflow==1.2.1

Then start Python and enter:

from keras.models import load_model
import coremltools

Load the previously saved model and the labels:

keras_model = load_model('zoo/09.3 retrained pet recognizer.h5')
class_labels = json.load(open('zoo/09.3 pet_labels.json'))

Then convert the model:

coreml_model = coremltools.converters.keras.convert(
 keras_model,
 image_input_names="input_1",
 class_labels=class_labels,
 image_scale=1/255.)
coreml_model.save('zoo/PetRecognizer.mlmodel')

You could also skip this and work with the .mlmodel file in the zoo
directory.

Now start Xcode, create a new project, and drag the PetRecognizer.mlmodel file to the
project. Xcode automatically imports the model and makes it callable. Let’s recognize
some pets!

Apple has an example project on its website that uses a standard image recognition
network. Download this project, unzip it, and then open it with Xcode.

16.11 Using a Keras Model from iOS | 225

https://apple.co/2HPUHOW

In the project overview, you should see a file called MobileNet.mlmodel. Delete that
and then drag the PetRecognizer.mlmodel file to where MobileNet.mlmodel used to be.
Now open ImageClassificationViewController.swift and replace any occurences of
MobileNet with PetRecognizer.

You should now be able to run the app as before, but with the new model and output
classes.

Discussion
Using a Keras model from an iOS app is surprisingly simple, at least if we stick to the
examples that Apple’s SDK ships with. The technology is quite recent though, and
there are not a lot of working examples out there that are radically different from
Apple’s examples. Moreover, CoreML only works on Apple operating systems, and
then only on iOS 11 or higher or macOS 10.13 or higher.

226 | Chapter 16: Productionizing Machine Learning Systems

Index

A
accuracy, as metric, 26
activation function

defined, 2
matrix multiplication and, 2
picking right function for final layer, 29

adversarial networks, 9-11
(see also generative adversarial networks)

autoencoders, 9-11
icon generation with, 179-181
image generation with, 161-174
sampling images from a correct distribu‐

tion, 167-170
visualizing images generated from latent

space, 170
visualizing results from, 166

average pooling, 6

B
backpropagation through time (BPTT), 8
batch normalization, 23
batch size, optimizing, 33
Bayes classification, 84-86
browser, running deep learning models in,

219-222

C
category pages, Wikipedia, 51
classification layer, 4
CNNs (see convolutional neural networks)
code generation

controlling variability of generated code,
67-69

generating Python code with RNNs, 65-67

coherence, image, 155
Common Crawl, 17
compression, 9, 171
conditional variational autoencoders, 172-174
confusion matrix, 198
convolution, defined, 5
convolutional layers

calculating gram matrix for, 152-155
icon generation with, 179-181

convolutional neural networks (CNNs), 5-6
(see also Faster RCNN)
music genre detection with, 196-198
origins, vii
prediction, 6
sentiment analysis with, 87-89
subsampling, 5
visualizing activations in image recognition

networks, 144-147
CoreML, 224-226
crawling, as data source, 16
Creative Commons, 15
cropping of images, 114
CrowdFlower dataset, 84
cube extension (Postgres), 211, 214

D
data augmentation

and icon generation, 181
defined, 23

data batches, 19
data sources, 11-17

(see also specific sources, e.g., Wikipedia)
data, in context of neural networks, 1
DataFrame, 75

227

datasets, exploring with Pandas, 75
deep dreaming, 149-152
deep learning, brief history of, vii
denoising autoencoder, 165
dialogue, extracting from texts, 105
dimension reduction, 213
discriminator network, 10, 183
Django, calling microservice from, 217
Dropout layer, 222
dropout technique

correcting overfitting with, 31, 93
improving emoji suggester performance

with, 92-94

E
embeddings

defined, 22
populating/querying, 212
storing with Postgres, 211
using scikit-learn nearest neighbor algo‐

rithm for, 210
Word2vec model, 35

emojis, suggesting, 83-102
collecting Twitter data for model training,

89-91
combining models, 101-102
constructing your own embeddings, 96-97
increasing performance with dropout/

multiple windows, 92-94
sentiment classifier for, 83-87
simple emoji predictor, 91
using a convolutional network for sentiment

analysis, 87-89
using an RNN for classification, 97-99
visualizing comparisons of different models,

99
word-level model for, 94

ensemble model, 101-102
entity classes, 41-45
exploding gradient problem, 65

F
Facebook API, as data source, 17
Faster RCNN

finding multiple objects in image, 137-139
training a pretrained model, 139-141

feature vectors, 76
filter, defined, 5
Firehose API, 13

fit method (Keras), 19
Flask, 215
Flickr API, 14

collecting a set of labeled images with, 117
improving image search results from, 120

fully connected layer, defined, 2
fully connected networks, 2-5
function method (Keras), 69

G
generative adversarial networks (GANs)

building, 183-184
showing icons produced by, 186-188
training, 185

generator network, 10, 183
gensim package, 36, 96, 206
GeoPandas, 47
getting unstuck, 25-33
Google Quick Draw, 162
government websites, as data source, 17
GPU (graphics processing units), viii

tensorflow-gpu and, x
training and batch size, 33
WebGL and, 220

gram matrix
calculating for convolutional layers of an

image, 152-155
for capturing image styles, 152-155

H
hidden layers, defined, 4
high-dimensional models, storing in Postgres,

213
high-dimensional space, finding nearest neigh‐

bors in, 129
hyperbolic tangent (tanh) function, 2, 30
hyperparameter, 28
hyperparameter tuning, 93

I
icon generation

acquiring icons for training, 176-178
building a GAN for, 183-184
converting icons to tensor representation,

178
deep nets for, 175-192
encoding icons as drawing instructions, 188

228 | Index

showing the icons produced by GAN,
186-188

training a GAN for, 185
training an RNN for, 189-190
using data augmentation to improve

autoencoders performance, 181
variational autoencoder for, 179-181
with an RNN, 191

Icons8, 176-178
image coherence, 155
image generation

autoencoder creation for, 163-165
autoencoders for, 161-174
conditional variational autoencoders for,

172-174
importing drawings from Google Quick

Draw, 162
sampling images from a correct distribu‐

tion, 167-170
visualizing a variational autoencoder space,

170
visualizing autoencoder results, 166

image processing
and activation function, 30
building an inverse image search service,

125-132
detecting multiple images, 133-141

(see also multiple images, detecting)
Flickr as data source, 14
generating icons with deep nets, 175-192
generating images with autoencoders,

161-174
image style, 143-159
multiple image classes in single image,

133-141
preprocessing, 22
projecting into an n-dimensional space, 128
reusing a pretrained image recognition net‐

work, 113-124
image recognition network

building a classifier that can tell cats from
dogs, 118-120

improving search results, 120
loading a pretrained network, 114
preprocessing images, 114-116
removing outliers from set of images, 120
retraining for specialized images, 122-124
reusing of pretrained network, 113-124
running inference on images, 116

using Flickr API to collect a set of labeled
images, 117

image style, 143-159
applying captured style, 156
capturing, 152-155
exaggeration of what a network sees,

149-152
improving loss function to increase image

coherence, 155
interpolation, 158
octaves and scaling, 147
visualizing CNN activations, 144-147

ImageDataGenerator class, 23
inference, running, 116
Internet Archive, 15
interpolation of image style, 158
inverse image search service, 125-132

acquiring images from Wikipedia, 125-127
exploring local neighborhoods in embed‐

dings, 130-132
finding nearest neighbors in high-

dimensional spaces, 129
projecting images into an n-dimensional

space, 128
iOS, using a Keras model from, 224-226

K
k-nearest neighbors algorithm, 129, 210
Keras

creating data batches with fit method, 19
creating feature vectors from text, 76
deploying model using a microservice, 216
function method, 69
ImageDataGenerator class, 23
loading pretrained image recognition net‐

work with, 114
predicting values for question matching,

80-82
running a model using TensorFlow Serving

toolkit, 222-224
solving runtime errors, 27
using a model trained on the desktop from a

mobile app on iOS, 224-226
Keras.js, 220-222
kernel, defined, 5
Kullback-Leibler divergence, 167

L
latent representation, 165

Index | 229

latent space, visualizing diversity of images gen‐
erated from, 170

layers, 1, 4
learning rate, optimizing, 33
linear activation function, 30
linear regression model, 57-59
long short-term memory network (LSTM), 8,

98
loss function

applying captured style, 156
image style interpolation, 158
improving to increase image coherence, 155
network troubleshooting and, 26
question/answer model and, 78

LSTM (long short-term memory network), 8,
98

M
machine learning systems, productionizing (see

productionizing of machine learning sys‐
tems)

maps, visualizing country data on, 47
max pooling, 6, 89
mean squared error, 78
melspectrograms, 194
microservices

calling from a web framework, 217
for deploying a Keras model, 216
writing/deploying in Python, 215

Minsky, Marvin, vii
MLP (multilayer perceptron) model, vii
model training

chatbot based on seq2seq framework,
108-111

for GANs, 185
for movie embeddings, 53-56
for music genre detector, 196-198
for music recommender system, 206
for word embeddings, 96-97
of pretrained Faster RCNN model, 139-141
of RNN to draw icons, 189-190
to reverse engineer a transformation,

103-105
with Pandas, 79

models
networks vs., 2
pretrained (see pretrained models)

movie recommender system
based on outgoing Wikipedia links, 49-59

building a system based on embeddings, 56
predicting simple movie properties, 57-59
training data collection, 49-52
training movie embeddings, 53-56

multilayer perceptron (MLP) model, vii
multiple images, detecting, 133-141

pretrained classifier for, 133-137
training a pretrained Faster RCNN model,

139-141
using Faster RCNN for object detection,

137-139
music, 193-208
music classification

graphic display of confusion matrix, 198
indexing existing music, 199-201
training a music genre detector, 196-198
training set creation for, 194-196

music recommender system, 202-208
collecting playlists and songs from Spotify,

203-205
recommending songs with Word2vec

model, 206-208
setting up Spotify API access, 202
training from playlists, 206

N
n-dimensional space, projecting images into,

128
naive Bayes classification, 84-86
nearest neighbors, 129

(see also k-nearest neighbors algorithm)
for music classification, 201

network
defined, 1
model vs., 2

network structure, optimizing, 32
neural networks (generally)

origins, vii
types of, 1-11

(see also specific types, e.g., convolu‐
tional neural networks)

neurons
extracting activations from, 69-71
maximizing activation of, 144-147
visualizing recurrent network activations,

69-71
nodes, map, 13
normalization, 22, 30

230 | Index

O
octaves, 147
one-dimensional convolutional network,

196-198
one-hot encoding, 21
OpenStreetMap (OSM), 12
optimization strategies (optimizers), 78
output labels, 29
overfitting

and validation set, 21
as symptom of network trouble, 26
defined, 5
Dropout layer to stop, 93
regularization/dropout to correct, 31

P
Pandas

exploring data with, 75
for visualizing comparisons of different

emoji suggester models, 99
training a model on data contained in, 79

Papert, Seymour, vii
PCA (see principal component analysis)
Perceptron system, vii
pooling layers, 6
Postgres

populating/querying embeddings stored in,
212

storing embeddings with, 211
storing high-dimensional models in, 213

preprocessing, 18-23
creating data batches, 19
getting a balanced training set, 18
images, 22
images for pretrained image recognition

network, 114-116
text, 21-22
training/testing/validation data, 20

pretrained classifiers, 133-137
pretrained models

for image recognition network, 114
retraining for specialized images, 122-124
reusing a pretrained image recognition net‐

work, 113-124
using pretrained word embeddings to find

word similarity, 36-38
principal component analysis (PCA)

for finding dimensions among local set of
images, 130-132

t-SNE vs., 131
productionizing of machine learning systems,

209-226
calling a microservice from a web frame‐

work, 217
deploying a Keras model using a microser‐

vice, 216
populating/querying embeddings stored in

Postgres, 212
Postgres for storing embeddings, 211
running a Keras model using TensorFlow

Serving toolkit, 222-224
running deep learning models in the

browser, 219-222
storing high-dimensional models in Post‐

gres, 213
TensorFlow seq2seq models, 218
using a Keras model from iOS, 224-226
using scikit-learn nearest neighbor algo‐

rithm for embeddings, 210
writing microservices in Python, 215

Project Gutenberg, 14
as training data source, 62
extracting dialogues from texts, 105

psycopg2 database adapter, 212

Q
query results, storing in Postgres, 212
question matching, 73-82

acquiring data from Stack Exchange, 73-75
building a question/answer model, 77-79
calculating embeddings for questions, 77-79
checking similarities, 80-82
exploring data using Pandas, 75
training a model with Pandas, 79
using Keras to featurize text, 76

R
recommender systems (see movie recommen‐

der system)
rectified linear unit (ReLU) activation function,

3
recurrent neural networks (RNNs), 6-9, 61

extracting activations from neurons, 69-71
for sentiment classifier, 97-99
generating Python code with, 65-67
generating Shakespeare-like texts with,

62-65
icon generation with, 191

Index | 231

icons as training data for, 188
training to draw icons, 189-190
vanishing gradients and LSTMs, 8

Reddit, 16
regularization, 31
ReLU (rectified linear unit) activation function,

3
Request Maker (Chrome extension), 16
retraining (see transfer learning)
reverse image search engine (see inverse image

search service)
RNNs (recurrent neural networks), 6-9, 61
Rosenblatt, Frank, vii
runtime errors, 26-28

S
scalable vector graphics (SVG), 177, 182
scaling of images, 147
scikit-learn, 129, 210
scraping, as data source, 16
semantic distances, 45-46
sentiment analysis, 14
sentiment classifier

constructing, 83-87
inspecting, 86
repurposing into a simple emoji predictor,

91
using a convolutional network for sentiment

analysis, 87-89
using an RNN for, 97-99

seq2seq framework
productionizing chat models, 218
training a chatbot based on, 108-111

sequence-to-sequence mapping, 103-111
as embedding process, 111
extracting dialogue from texts, 105
handling an open vocabulary, 106-108
training a seq2seq chatbot, 108-111
training a simple model, 103-105

sigmoid activation function, 3
singular value decomposition (SVD), 130, 213
softmax activation function, 30, 68, 117
spectrograms, 194-196
Spotify API

creating music recommender training set
from, 203-205

setting up access to, 202
Stack Exchange, 16, 73-75
stemming, 21

strided convolutions, 6
subsampling, 5
subword-unit tokenizing, 107
support vector machines (SVMs)

building a movie recommender system
with, 56

finding entity classes in embeddings with,
41-45

for building a classifier that can tell cats
from dogs, 118-120

origins, viii
SVD (singular value decomposition), 130, 213
SVG (scalable vector graphics), 177, 182

T
t-distributed stochastic neighbor embedding (t-

SNE), 40, 131
tanh (hyperbolic tangent) function, 2, 30
templates, Wikipedia, 11, 51
tensor, 1
TensorFlow

for training a GAN, 185
productionizing seq2seq chat models, 218

TensorFlow Serving toolkit, 222-224
term frequency-inverse document frequency

(tf-idf), 22
test set, 20
text generation, 61-71

acquiring text of public domain books for
training model, 61

controlling temperature of output, 67-69
controlling variability of generated code,

67-69
generating Python code with RNNs, 65-67
generating Shakespeare-like texts, 62-65
visualizing recurrent activations, 69-71

text preprocessing, 21-22
text processing

calculating text similarity using word
embeddings, 35-48

generating text in the style of an example
text, 61-71
(see also text generation)

movie recommender system based on out‐
going Wikipedia links, 49-59

question matching, 73-82
sequence-to-sequence mapping, 103-111
suggesting emojis, 83-102

Tokenizer class (Keras), 76

232 | Index

tokenizing, 21
of text with fixed number of tokens, 106-108
of tweets, 94

tools and techniques, 1-23
acquiring data, 11-17
preprocessing data, 18-23
types of neural networks, 1-11

training (see model training)
training data

balanced set for, 18
converting icons to tensor representation,

178
for emoji suggester, 89-91
for icon generation, 176-178
for movie recommender system, 49-52
Project Gutenberg as source, 62
public domain books for, 61
Stack Exchange as source, 73-75

training set
balanced, 18
defined, 20
for music classification, 194-196, 203-205

transfer learning, 113, 122-124, 140, 141
transformations

learning with sequence-to-sequence net‐
works, 103-111

reverse engineering with sequence-to-
sequence mapping, 103-105

troubleshooting (getting unstuck), 25-33
batch size, 33
checking intermediate results, 28
determining that you are stuck, 25
learning rate, 33
network structure, 32
picking right activation function for final

layer, 29
regularization and dropout for, 31
solving runtime errors, 26-28

TruncatedSVD class, 130, 214
Twitter API, 13, 89-91

U
US government websites, as data source, 17

V
validation set, 20
vanishing gradients problem, 8
variational autoencoder

conditional, 172-174

for icon generation, 179-181
sampling images from a correct distribu‐

tion, 167-170
visualizing diversity of images generated

from latent space, 170
vectors

images as, 163-165
meaning of words as, 39

visualization
of activations in image recognition net‐

works, 144-147
of autoencoder results, 166
of CNN activations, 144-147
of comparisons of different emoji models,

99
of country data on a map, 47
of country data on maps, 47
of emoji suggester models, 99
of images generated from latent space, 170
of numerical data on a map with GeoPan‐

das, 47
of recurrent activations, 69-71
of recurrent network activations, 69-71
of variational autoencoder space, 170
of word embeddings with t-SNE, 40

W
Wayback Machine, 15
web apps, 219-222
WebDriver, 17
WebGL, 220
Wikidata, 12

as image source, 125
for movie recommender system, 49-59
query language, 12, 127

Wikimedia, 127
Wikipedia, 11

acquiring images from, 125-127
for movie recommender training data,

49-52
Wikipedia API, 52
word embeddings

calculating for questions, 77-79
calculating semantic distances inside a class,

45-46
calculating text similarity with, 35-48
finding entity classes in embeddings, 41-45
for movie recommender system, 53-56
input sequences as, 94

Index | 233

to find word similarity, 36-38
training your own, 96-97
visualizing country data on a map, 47
visualizing with t-SNE, 40
Word2vec model for, 38-40

Word2vec model, 35
for word embeddings, 38-40, 94

recommending songs with, 206-208

Z
zero values, 154
zero-shot translations, 111

234 | Index

About the Author
Douwe Osinga is an experienced software engineer, formerly with Google, and
founder of three startups. He maintains a popular software project website, partly
focused on machine learning.

Colophon
The animal on the cover of Deep Learning Cookbook is a common loon or great
northern diver (Gavia immer). It can be found near remote freshwater lakes of the
northern US and Canada, as well as in southern parts of Greenland, Iceland, Norway,
and Alaska.

During the summer breeding season, the adult’s plumage has an aristocratic flair; its
head and neck are black with an iridescent sheen, its back is spotted black and white,
and its breast is white. In winter and during migration, its plumage changes to plain
gray on the back and head with a white throat. The common loon is seasonally
monogamous; pairs form and stay together for the breeding season and separate
when they migrate in winter. The female lays two eggs once a year. The young leave
the nest within 1–2 days after hatching and are capable of flight within 10–11 weeks.

The loon is built to be a powerhouse swimmer because its webbed feet are set far back
on its body—yet this inherited variation hampers its mobility on land. With barely a
splash it slips beneath the water’s surface to forage for food. Its diet mainly consists of
small fish, with an occasional crustacean or frog. It is solitary during feeding but
gathers in flocks at night.

The loon symbolizes the wilderness of the north; its yodeling call is a characteristic
sound of early summer in the north woods.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from British Birds. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://douweosinga.com/projects/machine_learning
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	A Brief History of Deep Learning
	Why Now?
	What Do You Need to Know?
	How This Book Is Structured
	Conventions Used in This Book
	Accompanying Code
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Tools and Techniques
	1.1 Types of Neural Networks
	Fully Connected Networks
	Convolutional Networks
	Recurrent Networks
	Adversarial Networks and Autoencoders
	Conclusion

	1.2 Acquiring Data
	Wikipedia
	Wikidata
	OpenStreetMap
	Twitter
	Project Gutenberg
	Flickr
	The Internet Archive
	Crawling
	Other Options

	1.3 Preprocessing Data
	Getting a Balanced Training Set
	Creating Data Batches
	Training, Testing, and Validation Data
	Preprocessing of Text
	Preprocessing of Images
	Conclusion

	Chapter 2. Getting Unstuck
	2.1 Determining That You Are Stuck
	Problem
	Solution
	Discussion

	2.2 Solving Runtime Errors
	Problem
	Solution
	Discussion

	2.3 Checking Intermediate Results
	Problem
	Solution
	Discussion

	2.4 Picking the Right Activation Function (for Your Final Layer)
	Problem
	Solution
	Discussion

	2.5 Regularization and Dropout
	Problem
	Solution
	Discussion

	2.6 Network Structure, Batch Size, and Learning Rate
	Problem
	Solution
	Discussion

	Chapter 3. Calculating Text Similarity Using Word Embeddings
	3.1 Using Pretrained Word Embeddings to Find Word Similarity
	Problem
	Solution
	Discussion

	3.2 Word2vec Math
	Problem
	Solution
	Discussion

	3.3 Visualizing Word Embeddings
	Problem
	Solution
	Discussion

	3.4 Finding Entity Classes in Embeddings
	Problem
	Solution
	Discussion

	3.5 Calculating Semantic Distances Inside a Class
	Problem
	Solution
	Discussion

	3.6 Visualizing Country Data on a Map
	Problem
	Solution
	Discussion

	Chapter 4. Building a Recommender System Based on Outgoing Wikipedia Links
	4.1 Collecting the Data
	Problem
	Solution
	Discussion

	4.2 Training Movie Embeddings
	Problem
	Solution
	Discussion

	4.3 Building a Movie Recommender
	Problem
	Solution
	Discussion

	4.4 Predicting Simple Movie Properties
	Problem
	Solution
	Discussion

	Chapter 5. Generating Text in the Style of an Example Text
	5.1 Acquiring the Text of Public Domain Books
	Problem
	Solution
	Discussion

	5.2 Generating Shakespeare-Like Texts
	Problem
	Solution
	Discussion

	5.3 Writing Code Using RNNs
	Problem
	Solution
	Discussion

	5.4 Controlling the Temperature of the Output
	Problem
	Solution
	Discussion

	5.5 Visualizing Recurrent Network Activations
	Problem
	Solution
	Discussion

	Chapter 6. Question Matching
	6.1 Acquiring Data from Stack Exchange
	Problem
	Solution
	Discussion

	6.2 Exploring Data Using Pandas
	Problem
	Solution
	Discussion

	6.3 Using Keras to Featurize Text
	Problem
	Solution
	Discussion

	6.4 Building a Question/Answer Model
	Problem
	Solution
	Discussion

	6.5 Training a Model with Pandas
	Problem
	Solution

	6.6 Checking Similarities
	Problem
	Solution
	Discussion

	Chapter 7. Suggesting Emojis
	7.1 Building a Simple Sentiment Classifier
	Problem
	Solution
	Discussion

	7.2 Inspecting a Simple Classifier
	Problem
	Solution
	Discussion

	7.3 Using a Convolutional Network for Sentiment Analysis
	Problem
	Solution
	Discussion

	7.4 Collecting Twitter Data
	Problem
	Solution
	Discussion

	7.5 A Simple Emoji Predictor
	Problem
	Solution
	Discussion

	7.6 Dropout and Multiple Windows
	Problem
	Solution
	Discussion

	7.7 Building a Word-Level Model
	Problem
	Solution
	Discussion

	7.8 Constructing Your Own Embeddings
	Problem
	Solution
	Discussion

	7.9 Using a Recurrent Neural Network for Classification
	Problem
	Solution
	Discussion

	7.10 Visualizing (Dis)Agreement
	Problem
	Solution
	Discussion

	7.11 Combining Models
	Problem
	Solution
	Discussion

	Chapter 8. Sequence-to-Sequence Mapping
	8.1 Training a Simple Sequence-to-Sequence Model
	Problem
	Solution
	Discussion

	8.2 Extracting Dialogue from Texts
	Problem
	Solution
	Discussion

	8.3 Handling an Open Vocabulary
	Problem
	Solution
	Discussion

	8.4 Training a seq2seq Chatbot
	Problem
	Solution
	Discussion

	Chapter 9. Reusing a Pretrained Image Recognition Network
	9.1 Loading a Pretrained Network
	Problem
	Solution
	Discussion

	9.2 Preprocessing Images
	Problem
	Solution
	Discussion

	9.3 Running Inference on Images
	Problem
	Solution
	Discussion

	9.4 Using the Flickr API to Collect a Set of Labeled Images
	Problem
	Solution
	Discussion

	9.5 Building a Classifier That Can Tell Cats from Dogs
	Problem
	Solution
	Discussion

	9.6 Improving Search Results
	Problem
	Solution
	Discussion

	9.7 Retraining Image Recognition Networks
	Problem
	Solution
	Discussion

	Chapter 10. Building an Inverse Image Search Service
	10.1 Acquiring Images from Wikipedia
	Problem
	Solution
	Discussion

	10.2 Projecting Images into an N-Dimensional Space
	Problem
	Solution
	Discussion

	10.3 Finding Nearest Neighbors in High-Dimensional Spaces
	Problem
	Solution
	Discussion

	10.4 Exploring Local Neighborhoods in Embeddings
	Problem
	Solution
	Discussion

	Chapter 11. Detecting Multiple Images
	11.1 Detecting Multiple Images Using a Pretrained Classifier
	Problem
	Solution
	Discussion

	11.2 Using Faster RCNN for Object Detection
	Problem
	Solution
	Discussion

	11.3 Running Faster RCNN over Our Own Images
	Problem
	Solution
	Discussion

	Chapter 12. Image Style
	12.1 Visualizing CNN Activations
	Problem
	Solution
	Discussion

	12.2 Octaves and Scaling
	Problem
	Solution
	Discussion

	12.3 Visualizing What a Neural Network Almost Sees
	Problem
	Solution
	Discussion

	12.4 Capturing the Style of an Image
	Problem
	Solution
	Discussion

	12.5 Improving the Loss Function to Increase Image Coherence
	Problem
	Solution
	Discussion

	12.6 Transferring the Style to a Different Image
	Problem
	Solution

	12.7 Style Interpolation
	Problem
	Solution
	Discussion

	Chapter 13. Generating Images with Autoencoders
	13.1 Importing Drawings from Google Quick Draw
	Problem
	Solution
	Discussion

	13.2 Creating an Autoencoder for Images
	Problem
	Solution
	Discussion

	13.3 Visualizing Autoencoder Results
	Problem
	Solution
	Discussion

	13.4 Sampling Images from a Correct Distribution
	Problem
	Solution
	Discussion

	13.5 Visualizing a Variational Autoencoder Space
	Problem
	Solution
	Discussion

	13.6 Conditional Variational Autoencoders
	Problem
	Solution
	Discussion

	Chapter 14. Generating Icons Using Deep Nets
	14.1 Acquiring Icons for Training
	Problem
	Solution
	Discussion

	14.2 Converting the Icons to a Tensor Representation
	Problem
	Solution
	Discussion

	14.3 Using a Variational Autoencoder to Generate Icons
	Problem
	Solution
	Discussion

	14.4 Using Data Augmentation to Improve the Autoencoder’s Performance
	Problem
	Solution
	Discussion

	14.5 Building a Generative Adversarial Network
	Problem
	Solution
	Discussion

	14.6 Training Generative Adversarial Networks
	Problem
	Solution
	Discussion

	14.7 Showing the Icons the GAN Produces
	Problem
	Solution
	Discussion

	14.8 Encoding Icons as Drawing Instructions
	Problem
	Solution
	Discussion

	14.9 Training an RNN to Draw Icons
	Problem
	Solution
	Discussion

	14.10 Generating Icons Using an RNN
	Problem
	Solution
	Discussion

	Chapter 15. Music and Deep Learning
	15.1 Creating a Training Set for Music Classification
	Problem
	Solution
	Discussion

	15.2 Training a Music Genre Detector
	Problem
	Solution
	Discussion

	15.3 Visualizing Confusion
	Problem
	Solution
	Discussion

	15.4 Indexing Existing Music
	Problem
	Solution

	15.5 Setting Up Spotify API Access
	Problem
	Solution
	Discussion

	15.6 Collecting Playlists and Songs from Spotify
	Problem
	Solution
	Discussion

	15.7 Training a Music Recommender
	Problem
	Solution

	15.8 Recommending Songs Using a Word2vec Model
	Problem
	Solution
	Discussion

	Chapter 16. Productionizing Machine Learning Systems
	16.1 Using Scikit-Learn’s Nearest Neighbors for Embeddings
	Problem
	Solution
	Discussion

	16.2 Use Postgres to Store Embeddings
	Problem
	Solution
	Discussion

	16.3 Populating and Querying Embeddings Stored in Postgres
	Problem
	Solution
	Discussion

	16.4 Storing High-Dimensional Models in Postgres
	Problem
	Solution
	Discussion

	16.5 Writing Microservices in Python
	Problem
	Solution
	Discussion

	16.6 Deploying a Keras Model Using a Microservice
	Problem
	Solution
	Discussion

	16.7 Calling a Microservice from a Web Framework
	Problem
	Solution
	Discussion

	16.8 TensorFlow seq2seq models
	Problem
	Solution
	Discussion

	16.9 Running Deep Learning Models in the Browser
	Problem
	Solution
	Discussion

	16.10 Running a Keras Model Using TensorFlow Serving
	Problem
	Solution
	Discussion

	16.11 Using a Keras Model from iOS
	Problem
	Solution
	Discussion

	Index
	About the Author

